RECENT ADVANCES IN SUSTAINABLE PROCESS DESIGN AND OPTIMIZATION

With CD-ROM

editors

Dominic C Y Foo
University of Nottingham Malaysia, Malaysia

Mahmoud M El-Halwagi
Texas A&M University, USA

Raymond R Tan
De La Salle University-Manila, Philippines
CONTENTS

Preface v
List of Contributors xi

Section 1: Process Modeling 1

 Authors: L. T. Fan & T. Zhang

 1 Introduction 3
 2 Thermodynamic Foundations 4
 2.1 Reference states 4
 2.1.1 Standard state 4
 2.1.2 Dead state 5
 2.2 Balances of mass, energy, entropy-dissipation, and available energy 11
 2.2.1 Mass balance 13
 2.2.2 Energy balance 14
 2.2.3 Entropy-dissipation balance 16
 2.2.4 Available energy balance 17
 2.3 First-law and second-law conservation (process) efficiencies 18
 2.4 Simple systems 22
 2.4.1 Thermal mixing 22
 2.4.1.1 Numerical illustration 24
 2.4.2 Biomass pyrolysis 27
 3 Economic Foundations 34
 3.1 Cost estimation 35
 3.1.1 External cost 35
 3.1.2 Internal cost 37
Contents

4 Sustainability Assessment .. 39
 4.1 Sustainability potential .. 39
 4.1.1 Methodology .. 40
 4.1.1.1 Determination of alternative synthetic routes 41
 4.1.1.2 Hierarchical assessment of the sustainability-potential of alternative synthetic routes 45
 4.1.2 Applications ... 48
4.2 Sustainable Process Index ... 49
4.3 AIChE Sustainability Index (SI) 51
4.4 Hierarchical thermodynamic metrics 53
 4.4.1 Multi-scale system ... 54
 4.4.2 Aggregation hierarchy ... 54
 4.4.3 Spatial hierarchy .. 56
5 Epilog ... 59

2. Life Cycle Assessment (LCA) ... 65
Authors: L. T. Fan & T. Zhang

1 Phases of Life Cycle Assessment (LCA) 65
 1.1 Phase 1: Goal and scope definition 65
 1.2 Phase 2: Inventory analysis 66
 1.3 Phase 3: Impact assessment 69
 1.4 Phase 4: Interpretation .. 74
2 Calculating Environmental Burdens and Impacts in LCA — An Example ... 74
3 Thermodynamic Input-Output LCA (TIO-LCA) 75
4 Ecologically-Based Life Cycle Assessment (Eco-LCA) 76

3. Transport Model for Nanofiltration and Reverse Osmosis System based on Irreversible Thermodynamic 79
Author: M. F. Chong

1 Introduction .. 79
2 Transport Mechanistic and Irreversible Thermodynamics based Transport Models for NF and RO membranes 80
3 Fundamental of Irreversible Thermodynamics
 in Membrane System .. 81
Contents

4 Spiegler–Kedem Model for Single Solute System 85
5 Spiegler–Kedem Model for Multiple Solute Systems 87
 5.1 Spiegler–Kedem model for binary solutes system 88
 5.2 Extended Spiegler–Kedem model for multiple solute systems 89
 5.3 Spiegler–Kedem model for multiple solutes system in differential equation form 90
 5.4 Kedem–Katchalsky model for binary solutes system with one impermeable solute 90
 5.5 Kedem–Katchalsky model for nonelectrolyte, dilute, multiple solute systems 91
 5.5.1 Case study 1: Binary solutes system 91
 5.5.2 Case study 2: Ternary solute system 93
6 Process Design for Membrane Systems 96
7 Conclusion .. 102

 Authors: H. H. Lou, S. Dusija, X. Li, J. L. Gossage & J. R. Hopper

1 Introduction .. 107
2 Polymerization Reaction and Polymer Properties 109
 2.1 Polymerization kinetics .. 109
 2.2 Polymer properties ... 111
 2.3 Polymer reactions in CSTR/batch reactors 113
3 Case Study of Inhibition .. 113
 3.1 Reaction kinetics for vinyl acetate polymerization 115
 3.2 Selection of inhibitor .. 115
 3.3 Simulation of reaction runaway and inhibition in batch process 118
 3.4 Simulation of reaction runaway and inhibition for emergency shutdown of a CSTR 122
 3.5 Effect on polymer properties for continuous operations 124
4 Conclusions and Inference ... 127
Contents

Section 2: Material Resource Conservation and Waste Reduction 131

5. Resource Conservation through Pinch Analysis 133

Author: D. C. Y. Foo

1 Introduction ... 133
2 Design Tools for Resource Conservation 134
 2.1 Targeting tools 134
 2.1.1 Material recovery pinch diagram (MRPD) 134
 2.1.2 Material surplus composite curves (MSCC) 136
 2.1.3 Cascade analysis technique 137
2.2 Network Design Techniques 139
3 Examples of RCN 140
 3.1 Water network synthesis 140
 3.2 Gas network 144
 3.3 Property network 149
4 Further Improvement 155
5 Conclusion ... 155

6. Optimal Water Network with Internal Water Mains and Its Industrial Application 159

Authors: X. Feng, J. Bai, R. Shen & C. Deng

1 Introduction ... 159
2 Use of Water Mains 160
3 Optimal Design of Water Network with Internal Water Mains 162
 3.1 Superstructure of Water Network with Internal Water Mains 162
 3.2 Mathematical Modeling for the Water Network
 Superstructure with Internal Water Mains 164
 3.2.1 Determining the number of internal water mains 164
 3.2.2 Optimization on freshwater consumption 164
 3.2.3 Structure constraints 166
 3.2.4 Solving the model 168
4 Optimal Design of Water Network Involving Wastewater Regeneration Recycle with Internal Water Mains 168
 4.1 Superstructure of Water Networks Involving
 Wastewater Regeneration Recycle with Internal Water Mains 168
Contents

4.2 Mathematical Modeling for the Water Network
Superstructure Involving Wastewater Regeneration
Recycle with Internal Water Mains 169
4.2.1 Minimizing the freshwater consumption 169
4.2.2 Minimizing regenerated water flowrate 171
4.2.3 Minimizing regeneration load 171

5 Industrial Applications 172
5.1 Optimizing Procedure 172
5.2 Rules to Determine Limiting Water Data 173
5.3 Adjustment Principles 174

6 Case Study I: A PVC and Sodium Hydroxide Plant .. 175
6.1 Current Water System 175
6.2 Determining Contaminants and Limiting
Concentrations 175
6.3 Optimizing Scheme with Water Reuse/Recycle .. 180

7 Case Study II: An Ammonia Plant 184
7.1 Current Water System 184
7.2 Determine Contaminants and Limiting Concentrations 186
7.3 Optimizing Scheme with Water Regeneration
Reuse/Recycle 188

7. Mathematical Models for Optimal Resource Utilization
in Process Industries 195

Author: A. Chakraborty

1 Introduction 195
1.1 Mathematical modelling of the resource allocation
planning problem 198
1.2 Topological constraints 199
1.2.1 Uneconomical matches based on flowrates —
An example of conditional matching 200
1.2.2 MINLP formulation with topological constraints 200
1.2.3 MILP formulation with topological constraints 202

2 Water Recycle Opportunities in Process Industries ... 204
2.1 Solution approaches 206
2.2 Example — A textile industry freshwater minimization
problem ... 207
2.2.1 Graphical analysis 207
2.2.2 Linear programming 208
2.2.3 Interpretation of results based on heuristics ... 209
2.2.4 Constraints based on heuristics — An example of stream prioritization ... 210
2.2.5 The textile industry problem with topological constraints ... 210

2.3 Computation performance of MILP model on large-size problems — An example from the pulp & paper industry ... 211

3 Optimal Solvent Recovery from Pharmaceutical Wastes ... 213
3.1 Example — Waste management in a typical pharmaceutical company ... 215
3.1.1 Marketable product portfolio (sinks) ... 215
3.1.2 Base case policy ... 217
3.1.3 Comparison of base case policy with other waste management policies ... 217
3.1.4 Conditioning of wastes to marketable products ... 219
3.1.5 Economic potential analysis ... 221

4 Preconditioning of Resources Prior to Allocation — Synthesis of Optimal Mixer-Separator Networks ... 221
4.1 Pruning of search space ... 223
4.2 Mathematical model for optimal resource allocation with pre-conditioning ... 224
4.3 Illustrative example ... 225

5 Conclusions/Significance ... 227

8. Wastewater Minimisation in Batch Chemical Plants: Single Contaminant Media

Author: T. Majozi

1 Background to Wastewater Minimisation in Batch Plants ... 234
2 Problem Statement ... 235
3 Problem Superstructure ... 236
4 Mathematical Model ... 238
4.1 Water reuse/recycle module ... 238
4.2 Sequencing/scheduling module ... 244
4.2.1 Sequencing in the absence of reusable water storage ... 245
4.2.2 Sequencing in the presence of reusable water storage ... 246
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Objective function</td>
<td>249</td>
</tr>
<tr>
<td>5 First Case Study</td>
<td>249</td>
</tr>
<tr>
<td>5.1 Water reuse/recycle module</td>
<td>250</td>
</tr>
<tr>
<td>5.2 Sequencing/scheduling module</td>
<td>251</td>
</tr>
<tr>
<td>5.3 Computational results</td>
<td>251</td>
</tr>
<tr>
<td>6 Second Case Study</td>
<td>254</td>
</tr>
<tr>
<td>6.1 Capacity constraints</td>
<td>257</td>
</tr>
<tr>
<td>6.2 Mass ratio constraints</td>
<td>257</td>
</tr>
<tr>
<td>6.3 Computational results</td>
<td>257</td>
</tr>
<tr>
<td>7 Concluding Remarks</td>
<td>260</td>
</tr>
</tbody>
</table>

9. Wastewater Minimisation in Batch Chemical Plants: *Multiple Contaminant Media*
Authors: T. Majazi & J. Gouws

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Multiple Contaminant Wastewater Minimisation</td>
<td>265</td>
</tr>
<tr>
<td>Background</td>
<td>265</td>
</tr>
<tr>
<td>2 Problem Statement</td>
<td>266</td>
</tr>
<tr>
<td>3 Mathematical Formulation</td>
<td>266</td>
</tr>
<tr>
<td>3.1 Mass balance constraints</td>
<td>267</td>
</tr>
<tr>
<td>3.1.1 Mass balance constraints without storage</td>
<td>267</td>
</tr>
<tr>
<td>3.1.2 Mass balance constraints including central storage</td>
<td>270</td>
</tr>
<tr>
<td>3.2 Sequencing and scheduling constraints</td>
<td>272</td>
</tr>
<tr>
<td>3.2.1 Task scheduling constraints</td>
<td>273</td>
</tr>
<tr>
<td>3.2.2 Recycler/reuse sequencing constraints</td>
<td>274</td>
</tr>
<tr>
<td>3.2.3 Sequencing and scheduling constraints associated with storage</td>
<td>275</td>
</tr>
<tr>
<td>3.2.4 Feasibility and time horizon constraints</td>
<td>277</td>
</tr>
<tr>
<td>3.3 Objective function</td>
<td>277</td>
</tr>
<tr>
<td>4 Solution Procedure</td>
<td>278</td>
</tr>
<tr>
<td>5 Illustrative Examples</td>
<td>278</td>
</tr>
<tr>
<td>5.1 First illustrative example</td>
<td>279</td>
</tr>
<tr>
<td>5.1.1 Solution with no central storage vessel</td>
<td>280</td>
</tr>
<tr>
<td>5.1.2 Solution with central storage</td>
<td>281</td>
</tr>
<tr>
<td>5.2 Second illustrative example</td>
<td>284</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>286</td>
</tr>
</tbody>
</table>
10. Adaptive Swarm-Based Simulated Annealing for the Synthesis of Water Networks
 Author: R. R. Tan
 1 Introduction .. 291
 2 Simulated Annealing .. 293
 3 Swarm Annealing I ... 294
 4 Swarm Annealing II .. 297
 5 Algorithm Implementation and Testing 298
 6 Test Problems .. 299
 6.1 Case 1 ... 299
 6.2 Case 2 ... 303
 7 Discussion of Results ... 306
 8 Conclusion ... 307

11. Optimal Wastewater Network Design
 Authors: J. M. Jeżowski, G. Poplewski & I. Dzygyrey
 1 Introduction .. 311
 2 WWTN Problem Formulation and Description 314
 3 Literature Overview .. 316
 4 Hybrid Approach for WWTN .. 322
 4.1 Overview of the approach 322
 4.2 Targeting stage .. 323
 4.3 Structure development optimization stage 325
 4.4 Final optimization stage 326
 4.5 Example of application ... 327
 5 Simultaneous Approach with the Use of Stochastic
 Optimization Method .. 330
 5.1 Superstructure and optimization model 330
 5.2 Overview of solution approach 334
 5.3 Examples of application 336

Section 3: Energy Conservation and Efficiency

12. Clean Energy and CO₂ Capture, Transport and Storage
 Authors: M. S. Ba-Shammakh, A. Elkamel, H. Hashim,
 P. Douglas & E. Croiset
 1 Introduction .. 351
Contents

2 Overview of Power Generation 352
 2.1 Fossil fuel power plants 353
 2.2 Hydroelectric power plant 353
 2.3 Nuclear power plants 354
 2.4 Renewable sources power plants 354

3 CO2 Reduction Options 355
 3.1 Power plant efficiency improvement 355
 3.1.1 Pulverized coal power plant (PC) 357
 3.1.2 Integrated gasification combined cycle (IGCC) 357
 3.1.3 Natural gas combined cycle (NGCC) 358

4 CO2 Capture and Sequestration 358
 4.1 CO2 capture 358
 4.1.1 Chemical solvent absorption 358
 4.1.2 Physical absorption 360
 4.1.3 Physical adsorption 360
 4.1.4 Cryogenic separation 360
 4.1.5 Membrane separation 361
 4.1.6 O2/CO2 combustion processes 361
 4.1.7 Chemical looping combustion 361
 4.1.8 Biological capture process 362
 4.2 Sequestration 362
 4.2.1 Geologic storage 363
 4.2.1.1 Depleted oil and gas reservoirs 363
 4.2.1.2 Enhanced oil recovery 363
 4.2.1.3 Deep saline formations 363
 4.2.2 Ocean storage 364

5 Optimization and Planning Models for Power Plants 365
6 Superstructure Representation 368
7 Mathematical Model Development 371
8 Case Study 382
9 Summary 393

Author: P. Varbanov

1 Introduction 399
2 Basics of P-graph 400
2.1 The need for advanced process network optimisation tools .. 400
2.2 Process representation with P-graph ... 401
2.3 Advantages of the P-graph representation ... 402
2.4 Foundation of the P-graph framework: The axioms ... 402
2.5 Algorithms for the network manipulation and optimisation .. 403

3 Engineering Context: FCCC Systems and Biomass Resources .. 405
3.1 Processing steps ... 405
3.2 Efficiency of FC and combined cycles .. 405

4 Modelling Procedures ... 406
4.1 General synthesis procedure ... 406
4.2 Representation of the operating and capital costs ... 407
4.3 Optimisation objective ... 407
4.4 Sensitivity analysis procedure ... 407

5 Applying P-Graph: Heat and Power Generation Using FCCC .. 408
5.1 Case study description ... 408
5.1.1 Materials and streams .. 408
5.1.2 Candidate operating units .. 408
5.2 Results and Discussion ... 411

6 Summary .. 418
7 Sources of Further Information .. 419

Authors: R. Mahmud, D. Harell & M. El-Halwagi

1 Introduction .. 423
2 Problem Statement .. 427
3 Overall Approach .. 429
3.1 Mass integration and heat integration approach ... 430
4 Steam Header Balance .. 437
5 Energy Integration Approach .. 439
6 Extractable Work Method .. 441
6.1 Case 1: Excess process steam without external fuel .. 444
6.2 Case 2: Excess steam with external fuel ... 445
18. A Novel Design Procedure for Solar Thermal Systems
Author: S. Bandyopadhyay

1 Introduction .. 561
2 Solar Thermal System Design 562
3 Mathematical Model ... 563
4 Generation of Design Space 565
 4.1 Establishment of design limit based on load temperature .. 567
 4.2 Establishment of design limit based on maximum temperature 568
 4.3 Overall design space and its significance ... 569
5 Conclusions ... 572

19. Energy Saving in Drying Processes
Authors: C. L. Law & A. S. Mujumdar

1 Introduction .. 577
2 Why Conventional Dryers Have Low Energy Efficiency .. 578
3 Classification .. 579
 3.1 Direct firing ... 579
 3.2 Electric heating .. 580
 3.3 Heat recovery ... 581
 3.3.1 Heat pump ... 581
 3.3.2 Use of phase change material (PCM) .. 582
 3.4 Control of dryer ... 582
4 Case Studies .. 582
 4.1 Direct firing ... 583
 4.1.1 Case study: Fluidized bed dryer .. 583
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Electric heating</td>
<td>584</td>
</tr>
<tr>
<td>4.3 Heat recovery</td>
<td>584</td>
</tr>
<tr>
<td>4.3.1 Case study: Spray dryer</td>
<td>584</td>
</tr>
<tr>
<td>4.3.2 Case study: Heat pump</td>
<td>586</td>
</tr>
<tr>
<td>4.4 Control strategy</td>
<td>586</td>
</tr>
<tr>
<td>4.4.1 Case study: Model predictive control</td>
<td>586</td>
</tr>
<tr>
<td>4.4.2 Case study: Feedback controller</td>
<td>588</td>
</tr>
<tr>
<td>4.4.3 Case study: Model predictive control</td>
<td>588</td>
</tr>
<tr>
<td>5 General Guidelines for Energy Savings</td>
<td>588</td>
</tr>
<tr>
<td>6 Conclusion</td>
<td>589</td>
</tr>
</tbody>
</table>

Author: M. B. Noureldin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>593</td>
</tr>
<tr>
<td>2 Oil-Gas Separation Plants</td>
<td>595</td>
</tr>
<tr>
<td>2.1 Process description of a gas/oil separation plant (GOSP)</td>
<td>595</td>
</tr>
<tr>
<td>3 Heat Integration and Software Application in the GOSP</td>
<td>596</td>
</tr>
<tr>
<td>4 Results and Discussion of Heat Integration Application in the GOSP</td>
<td>598</td>
</tr>
<tr>
<td>5 Summary of Comparison</td>
<td>606</td>
</tr>
<tr>
<td>6 Conclusions</td>
<td>606</td>
</tr>
</tbody>
</table>

21. Energy Management for the Process Industries

Author: A. Rossiter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>609</td>
</tr>
<tr>
<td>2 Industry Response</td>
<td>610</td>
</tr>
<tr>
<td>2.1 Best practices in operation and maintenance</td>
<td>611</td>
</tr>
<tr>
<td>2.1.1 Electric supply</td>
<td>611</td>
</tr>
<tr>
<td>2.1.2 Steam system maintenance</td>
<td>612</td>
</tr>
<tr>
<td>2.1.3 Compressed air systems</td>
<td>613</td>
</tr>
<tr>
<td>2.1.4 Heat exchanger cleaning</td>
<td>614</td>
</tr>
<tr>
<td>2.1.5 Fired heaters</td>
<td>614</td>
</tr>
<tr>
<td>2.1.6 Process equipment</td>
<td>615</td>
</tr>
<tr>
<td>2.2 Identifying economic investment opportunities</td>
<td>618</td>
</tr>
</tbody>
</table>
2.2.1 Employee contests .. 618
2.2.2 Process reviews ... 619
2.2.3 Pinch analysis .. 619
2.2.4 Steam system rebalancing 621
2.2.5 By-product synergies .. 624
2.3 Management systems to sustain progress 626
3 Conclusions .. 627

Appendix 1: The Procedure for Determining the Datum Level Materials
Authors: L. T. Fan & Tengyan Zhang

Appendix 2: Estimation of the Specific Chemical Enthalpy, Entropy, and Exergy (Availability)
Authors: L. T. Fan & Tengyan Zhang

Authors: L. T. Fan & Tengyan Zhang

Appendix 4: Estimation of Energy (Enthalpy) and Exergy (Availability) Contents in Structurally Complicated Materials
Authors: L. T. Fan & Tengyan Zhang

Appendix 5: Reaction-Network Synthesis Via the Graph-Theoretic Method Based on P-graphs: Vinyl-Chloride Synthesis
Authors: L. T. Fan & Tengyan Zhang

Appendix 6: Application of Sustainability Potential: Manufacture of Vinyl Chloride (C₂H₃Cl)
Authors: L. T. Fan & Tengyan Zhang
Appendix 7: Emergy and Exergy (Availability)
Authors: L. T. Fan & Tengyan Zhang

Appendix 8:
Authors: H. H. Lou, S. Dusija, X. Li,
J. L. Gossage & J. R. Hopper

Appendix 9: Mathematical models via Lingo 8.0
Authors: X. Feng, J. Bai, R. Shen & C. Deng

Appendix 10: Brief Manual — How to Code WWTN Problem in OPTY-STO Modeling System
Author: J. M. Jeżowski, G. Poplewski & I. Dzhygyrey