CONTENTS

Preface vii

PART 1
INTRODUCTION

1. Bioprocess Development: An Interdisciplinary Challenge 3
1.1 Steps in Bioprocess Development: A Typical New Product from Recombinant DNA 7
1.2 A Quantitative Approach 9

2. Introduction to Engineering Calculations 13
2.1 Physical Variables, Dimensions, and Units 14
2.2 Units 19
2.3 Force and Weight 22
2.4 Measurement Conventions 23
2.5 Standard Conditions and Ideal Gases 29
2.6 Physical and Chemical Property Data 31
2.7 Stoichiometry 32
2.8 Methods for Checking and Estimating Results 35

Summary of Chapter 2 37
References 44
Suggestions for Further Reading 44

3. Presentation and Analysis of Data 45
3.1 Errors in Data and Calculations 45
3.2 Presentation of Experimental Data 54
3.3 Data Analysis 55
3.4 Graph Paper with Logarithmic Coordinates 65
3.5 General Procedures for Plotting Data 69
3.6 Process Flow Diagrams 70

Summary of Chapter 3 73
References 82
Suggestions for Further Reading 82

PART 2
MATERIAL AND ENERGY BALANCES

4. Material Balances 87
4.1 Thermodynamic Preliminaries 87
4.2 Law of Conservation of Mass 89
4.3 Procedure for Material Balance Calculations 91
4.4 Material Balance Worked Examples 94
4.5 Material Balances with Recycle, Bypass, and Purge Streams 114
4.6 Stoichiometry of Cell Growth and Product Formation 116

Summary of Chapter 4 127
References 136
Suggestions for Further Reading 136

5. Energy Balances 139
5.1 Basic Energy Concepts 139
5.2 General Energy Balance Equations 141
5.3 Enthalpy Calculation Procedures 144
5.4 Enthalpy Change in Nonreactive Processes 145
5.5 Steam Tables 150
5.6 Procedure for Energy Balance Calculations without Reaction 151
5.7 Energy Balance Worked Examples without Reaction 151
5.8 Enthalpy Change Due to Reaction 156
5.9 Heat of Reaction for Processes with Biomass Production 159
5.10 Energy Balance Equation for Cell Culture 164
5.11 Cell Culture Energy Balance Worked Examples 165

Summary of Chapter 5 170
References 176
Suggestions for Further Reading 176
6. Unsteady-State Material and Energy Balances 177
6.1 Unsteady-State Material Balance Equations 177
6.2 Unsteady-State Energy Balance Equations 181
6.3 Solving Differential Equations 182
6.4 Solving Unsteady-State Mass Balances 183
6.5 Solving Unsteady-State Energy Balances 189
Summary of Chapter 6 192
References 197
Suggestions for Further Reading 197

PART 3

PHYSICAL PROCESSES

7. Fluid Flow 201
7.1 Classification of Fluids 201
7.2 Fluids in Motion 202
7.3 Viscosity 208
7.4 Momentum Transfer 210
7.5 Non-Newtonian Fluids 211
7.6 Viscosity Measurement 213
7.7 Rheological Properties of Fermentation Broths 217
7.8 Factors Affecting Broth Viscosity 218
7.9 Turbulence 223
Summary of Chapter 7 248
References 252
Suggestions for Further Reading 253

8. Mixing 255
8.1 Functions of Mixing 255
8.2 Mixing Equipment 256
8.3 Flow Patterns in Stirred Tanks 261
8.4 Impellers 265
8.5 Stirrer Power Requirements 282
8.6 Power Input by Gassing 292
8.7 Impeller Pumping Capacity 293
8.8 Suspension of Solids 295
8.9 Mechanisms of Mixing 298
8.10 Assessing Mixing Effectiveness 300
8.11 Scale-Up of Mixing Systems 304
8.12 Improving Mixing in Fermenters 305
8.13 Multiple Impellers 306
8.14 Retrofitting 311
8.15 Effect of Rheological Properties on Mixing 312
8.16 Role of Shear in Stirred Fermenters 315
Summary of Chapter 8 322
References 329
Suggestions for Further Reading 332

9. Heat Transfer 333
9.1 Heat Transfer Equipment 333
9.2 Mechanisms of Heat Transfer 340
9.3 Conduction 340
9.4 Heat Transfer Between Fluids 346
9.5 Design Equations for Heat Transfer Systems 351
9.6 Application of the Design Equations 364
9.7 Hydrodynamic Considerations with Cooling Coils 369
Summary of Chapter 9 371
References 377
Suggestions for Further Reading 377

10. Mass Transfer 379
10.1 Molecular Diffusion 380
10.2 Role of Diffusion in Bioprocessing 382
10.3 Film Theory 383
10.4 Convective Mass Transfer 384
10.5 Oxygen Uptake in Cell Cultures 393
10.6 Factors Affecting Oxygen Transfer in Fermenters 400
10.7 Measuring Dissolved Oxygen Concentration 407
10.8 Estimating Oxygen Solubility 409
10.9 Mass Transfer Correlations for Oxygen Transfer 411
10.10 Measurement of $k_L a$ 413
10.11 Measurement of the Specific Oxygen Uptake Rate, q_O 425
10.12 Practical Aspects of Oxygen Transfer in Large Fermenters 427
10.13 Alternative Methods for Oxygenation without Sparging 429
10.14 Oxygen Transfer in Shake Flasks 430
Summary of Chapter 10 433
References 442
Suggestions for Further Reading 443
PART 4
REATIONS AND REACTORS

12. Homogeneous Reactions 599

12.1 Basic Reaction Theory 599
12.2 Calculation of Reaction Rates from Experimental Data 607
12.3 General Reaction Kinetics for Biological Systems 612
12.4 Determining Enzyme Kinetic Constants from Batch Data 621
12.5 Regulation of Enzyme Activity 623
12.6 Kinetics of Enzyme Deactivation 629
12.7 Yields in Cell Culture 632
12.8 Cell Growth Kinetics 635
12.9 Growth Kinetics with Plasmid Instability 640
12.10 Production Kinetics in Cell Culture 643
12.11 Kinetics of Substrate Uptake in Cell Culture 645
12.12 Effect of Culture Conditions on Cell Kinetics 648
12.13 Determining Cell Kinetic Parameters from Batch Data 648
12.14 Effect of Maintenance on Yields 651
12.15 Kinetics of Cell Death 653
12.16 Metabolic Engineering 657

Summary of Chapter 12 688

13. Heterogeneous Reactions 705

13.1 Heterogeneous Reactions in Bioprocessing 706
13.2 Concentration Gradients and Reaction Rates in Solid Catalysts 707
13.3 Internal Mass Transfer and Reaction 710
13.4 The Thiele Modulus and Effectiveness Factor 722
13.5 External Mass Transfer 736
13.6 Liquid—Solid Mass Transfer Correlations 739
13.7 Experimental Aspects 741
13.8 Minimising Mass Transfer Effects 742
13.9 Evaluating True Kinetic Parameters 747
13.10 General Comments on Heterogeneous Reactions in Bioprocessing 748

Summary of Chapter 13 750

References 757
Suggestions for Further Reading 759

14. Reactor Engineering 761

14.1 Bioreactor Engineering in Perspective 762
14.2 Bioreactor Configurations 765
14.3 Practical Considerations for Bioreactor Construction 773
14.4 Monitoring and Control of Bioreactors 778
14.5 Ideal Reactor Operation 789
14.6 Sterilisation 823
14.7 Sustainable Bioprocessing 834

Summary of Chapter 14 844
References 850
Suggestions for Further Reading 852

Appendices
A. Conversion Factors 855
B. Ideal Gas Content 859
C. Physical and Chemical Property Data 861
D. Steam Tables 879
E. Mathematical Rules 887
F. U.S. Sieve and Tyler Standard Screen Series 895

Index 899