MOBILITY MODELS FOR NEXT GENERATION WIRELESS NETWORKS
AD HOC, VEHICULAR AND MESH NETWORKS

Paolo Santi
Istituto di Informatica e Telematica del CNR, Italy
Contents

List of Figures xv
List of Tables xxiii
About the Author xxv
Preface xxvii
Acknowledgments xxxiii
List of Abbreviations xxxv

Part I INTRODUCTION

1 Next Generation Wireless Networks 3
 1.1 WLAN and Mesh Networks 5
 1.2 Ad Hoc Networks 8
 1.3 Vehicular Networks 10
 1.4 Wireless Sensor Networks 13
 1.5 Opportunistic Networks 14
 References 16

2 Modeling Next Generation Wireless Networks 19
 2.1 Radio Channel Models 20
 2.2 The Communication Graph 26
 2.3 The Energy Model 31
 References 32

3 Mobility Models for Next Generation Wireless Networks 33
 3.1 Motivation 33
 3.2 Cellular vs. Next Generation Wireless Network Mobility Models 35
 3.3 A Taxonomy of Existing Mobility Models 38
10.2 The KKK Mobility Model

10.2.1 Extracting Physical Movement Trajectories from WLAN Traces

10.2.2 Extracting Pause Time

10.2.3 Dealing with Stationary Sub-Traces

10.2.4 Finding Hotspot Locations

10.2.5 Mobility Modeling

10.3 Final Considerations and Further Reading

References

Part IV MOBILITY MODELS FOR VEHICULAR NETWORKS

11 Vehicular Networks

11.1 Vehicular Networks: State of the Art

11.1.1 Motivation

11.1.2 Standardization Activities

11.2 Vehicular Networks: User Scenarios

11.2.1 Active Safety Applications

11.2.2 Cooperative Traffic Efficiency Applications

11.2.3 Cooperative Local Services

11.2.4 Global Internet Services

11.3 Vehicular Networks: Perspectives

11.4 Further Reading

References

12 Vehicular Networks: Macroscopic and Microscopic Mobility Models

12.1 Vehicular Mobility Models: The Macroscopic View

12.2 Vehicular Mobility Models: The Microscopic View

12.3 Further Reading

References

13 Microscopic Vehicular Mobility Models

13.1 Simple Microscopic Mobility Models

13.1.1 The Graph-Based Mobility Model

13.1.2 The Freeway Mobility Model

13.1.3 The Manhattan Mobility Model

13.2 The SUMO Mobility Model

13.2.1 Building the Road Network

13.2.2 Building the Traffic Demand
Contents

13.2.3 Route Computation 167
13.2.4 Running the Simulation and Generating Output 168

13.3 Integrating Vehicular Mobility and Wireless Network Simulation

13.3.1 The TraCI Interface for Coupled Vehicular Network Simulation 170

References 172

Part V MOBILITY MODELS FOR WIRELESS SENSOR NETWORKS

14 Wireless Sensor Networks 175
14.1 Wireless Sensor Networks: State of the Art 175
14.1.1 Hardware and Software Platforms 177
14.1.2 Standardization Activities 177
14.2 Wireless Sensor Networks: User Scenarios 180
14.2.1 Environmental Monitoring 180
14.2.2 Industrial Monitoring 181
14.2.3 Health and Well-Being Monitoring 181
14.2.4 Precision Agriculture 181
14.2.5 Seismic, Structural, and Building Monitoring 182
14.2.6 Intrusion Detection 182
14.2.7 Tracking of Objects, People, and Animals 183
14.3 WSNs: Perspectives 183
14.4 Further Reading 184
References 184

15 Wireless Sensor Networks: Passive Mobility Models 185
15.1 Passive Mobility in WSNs 186
15.2 Mobility Models for Wildlife Tracking Applications 187
15.2.1 The ZebraNet Mobility Model 187
15.2.2 The Whale Mobility Model 190
15.3 Modeling Movement Caused by External Forces 191
References 194

16 Wireless Sensor Networks: Active Mobility Models 197
16.1 Active Mobility of Sensor Nodes 198
16.1.1 Active Mobility and Sensing Coverage 198
16.1.2 Motion Control for Sensing Coverage 201
16.1.3 Motion Control for Event Tracking 206
Appendix B Elements of Graph Theory, Asymptotic Notation, and Miscellaneous Notions 323

B.1 Asymptotic Notation 323
B.2 Elements of Graph Theory 326
B.3 Miscellaneous Notions 330
References 333

Index 335