Statistical Methods
in Radiation Physics
Contents

Preface XIII

1 The Statistical Nature of Radiation, Emission, and Interaction 1
1.1 Introduction and Scope 1
1.2 Classical and Modern Physics – Determinism and Probabilities 1
1.3 Semiclassical Atomic Theory 3
1.4 Quantum Mechanics and the Uncertainty Principle 5
1.5 Quantum Mechanics and Radioactive Decay 8
Problems 11

2 Radioactive Decay 15
2.1 Scope of Chapter 15
2.2 Radioactive Disintegration – Exponential Decay 16
2.3 Activity and Number of Atoms 18
2.4 Survival and Decay Probabilities of Atoms 20
2.5 Number of Disintegrations – The Binomial Distribution 22
2.6 Critique 26
Problems 27

3 Sample Space, Events, and Probability 29
3.1 Sample Space 29
3.2 Events 33
3.3 Random Variables 36
3.4 Probability of an Event 36
3.5 Conditional and Independent Events 38
Problems 45

4 Probability Distributions and Transformations 51
4.1 Probability Distributions 51
4.2 Expected Value 59
4.3 Variance 63
4.4 Joint Distributions 65
4.5 Covariance 71
4.6 Chebyshev's Inequality 76
4.7 Transformations of Random Variables 77
4.8 Bayes' Theorem 82
Problems 84

5 Discrete Distributions 91
5.1 Introduction 91
5.2 Discrete Uniform Distribution 91
5.3 Bernoulli Distribution 92
5.4 Binomial Distribution 93
5.5 Poisson Distribution 98
5.6 Hypergeometric Distribution 106
5.7 Geometric Distribution 110
5.8 Negative Binomial Distribution 112
Problems 113

6 Continuous Distributions 119
6.1 Introduction 119
6.2 Continuous Uniform Distribution 119
6.3 Normal Distribution 124
6.4 Central Limit Theorem 132
6.5 Normal Approximation to the Binomial Distribution 135
6.6 Gamma Distribution 142
6.7 Exponential Distribution 142
6.8 Chi-Square Distribution 145
6.9 Student's t-Distribution 149
6.10 F Distribution 151
6.11 Lognormal Distribution 153
6.12 Beta Distribution 154
Problems 156

7 Parameter and Interval Estimation 163
7.1 Introduction 163
7.2 Random and Systematic Errors 163
7.3 Terminology and Notation 164
7.4 Estimator Properties 165
7.5 Interval Estimation of Parameters 168
7.5.1 Interval Estimation for Population Mean 168
7.5.2 Interval Estimation for the Proportion of Population 172
7.5.3 Estimated Error 173
7.5.4 Interval Estimation for Poisson Rate Parameter 175
7.6 Parameter Differences for Two Populations 176
Contents

11 Instrument Response 271
11.1 Introduction 271
11.2 Energy Resolution 271
11.3 Resolution and Average Energy Expended per Charge Carrier 275
11.4 Scintillation Spectrometers 276
11.5 Gas Proportional Counters 279
11.6 Semiconductors 280
11.7 Chi-Squared Test of Counter Operation 281
11.8 Dead Time Corrections for Count Rate Measurements 284
Problems 290

12 Monte Carlo Methods and Applications in Dosimetry 293
12.1 Introduction 293
12.2 Random Numbers and Random Number Generators 294
12.3 Examples of Numerical Solutions by Monte Carlo Techniques 296
12.3.1 Evaluation of \(\pi = 3.14159265\ldots \) 296
12.3.2 Particle in a Box 297
12.4 Calculation of Uniform, Isotropic Chord Length Distribution in a Sphere 300
12.5 Some Special Monte Carlo Features 306
12.5.1 Smoothing Techniques 306
12.5.2 Monitoring Statistical Error 306
12.5.3 Stratified Sampling 308
12.5.4 Importance Sampling 309
12.6 Analytical Calculation of Isotropic Chord Length Distribution in a Sphere 309
12.7 Generation of a Statistical Sample from a Known Frequency Distribution 312
12.8 Decay Time Sampling from Exponential Distribution 315
12.9 Photon Transport 317
12.10 Dose Calculations 323
12.11 Neutron Transport and Dose Computation 327
Problems 330

13 Dose–Response Relationships and Biological Modeling 337
13.1 Deterministic and Stochastic Effects of Radiation 337
13.2 Dose–Response Relationships for Stochastic Effects 338
13.3 Modeling Cell Survival to Radiation 341
13.4 Single-Target, Single-Hit Model 342
13.5 Multi-Target, Single-Hit Model 345
13.6 The Linear–Quadratic Model 347
Problems 348