Contents

Preface XV
List of Contributors XVII

1 LCOS Spatial Light Modulators: Trends and Applications 1
Grigory Lazarev, Andreas Hermerschmidt, Sven Krüger, and Stefan Osten
1.1 Introduction 1
1.2 LCOS-Based SLMs 2
1.2.1 LCOS Technology 2
1.2.1.1 Manufacturing and Assembly Technologies 2
1.2.1.2 Signal Flow 4
1.2.1.3 Drive Schemes and Latency 6
1.2.2 Operation Modes 8
1.2.2.1 Amplitude Modulation 9
1.2.2.2 Phase Modulation 9
1.2.2.3 Polarization Modulation 10
1.2.2.4 Complex-Valued Modulation 10
1.2.3 Performance Evaluation 11
1.3 Some Applications of Spatial Light Modulators in Optical Imaging and Metrology 12
1.4 Conclusion 23
References 23

2 Three-Dimensional Display and Imaging: Status and Prospects 31
Byoungho Lee and Youngmin Kim
2.1 Introduction 31
2.2 Present Status of 3D Displays 32
2.2.1 Hardware Systems 32
2.2.1.1 Stereoscopic Displays 32
2.2.1.2 Autostereoscopic Displays 36
2.2.1.3 Volumetric Displays 40
2.2.1.4 Holographic Displays 42
2.2.1.5 Recent 3D Display Techniques 44
3 Holographic Television: Status and Future 57
Malgorzata Kujawirska and Tomasz Kozacki
3.1 Introduction 57
3.2 The Concept of Holographic Television System 60
3.3 Holographic Display Configuration 63
3.3.1 Planar and Circular Configurations 63
3.3.2 Real Image Wigner Distribution Analysis of the Holographic Displays in Planar and Circular Configurations 65
3.3.2.1 Planar Configuration 66
3.3.2.2 Circular Configuration 67
3.3.3 Visual Perception Analysis of Holographic Displays in Planar and Circular Configurations 68
3.3.4 Comparison of the Display Configurations for Commercially Available SLMs 70
3.4 Capture Systems 71
3.4.1 The Theory of Wide-Angle Holographic Capture 71
3.4.2 The Capture System with Multiple Cameras 72
3.4.3 The Capture System with a Single Camera and Rotated Static Object 75
3.5 Display System 77
3.5.1 LCoS SLM in Holographic Display 77
3.5.2 Experimental Configurations of Holographic Displays 79
3.5.2.1 Display Basing on Spherical Illumination 80
3.5.2.2 Display Configuration Matching the Capture Geometry 80
3.5.2.3 Display Based on Tilted Plane Wave Illumination 81
3.6 Linking Capture and Display Systems 85
3.6.1 Mismatch in Sampling and Wavelength 86
3.6.2 Processing of Holograms to the Display Geometry 86
3.7 Optical Reconstructions of Real Scenes in Multi-SLM Display System 88
3.8 Conclusions and Future Perspectives 91
References 92

4 Display Holography – Status and Future 95
Ventseislav Sainov and Elena Stoykova
4.1 Introduction 95
4.2 Types of Holograms 97
4.3 Basic Parameters and Techniques of Holographic Recording 99
4.4 Light-Sensitive Materials for Holographic Recording in Display

4.4.1 Photoresists 103
4.4.2 Dichromate Gelatin 103
4.4.3 Photopolymers 104
4.4.4 Silver Halide Emulsions 105

4.5 Diffraction Efficiency of Discrete Carrier Holograms 108

4.6 Multicolor Holographic Recording 111

4.7 Digital Holographic Display: Holoprinters 115

4.8 Conclusion 117

References 117

5 Incoherent Computer-Generated Holography for 3D Color Imaging and Display 121

Toyohiko Yatagai and Yusuke Sando

5.1 Introduction 121

5.2 Three-Dimensional Imaging and Display with CGHs 122

5.3 Theory of this Method 123

5.3.1 Relation between Object Waves and 3D Fourier Spectrum 123

5.3.2 Extraction Method for Paraboloid of Revolution 124

5.3.3 Extension to Full-Color Reconstruction 126

5.4 Imaging System and Resolution 127

5.4.1 Size of Object 127

5.4.2 Spatial Resolution 128

5.4.3 Magnification along the z-direction 128

5.5 Experiments 129

5.5.1 Computer Simulation and Some Parameters 129

5.5.2 Optical Reconstruction 130

5.6 Biological Specimen 131

5.7 Conclusion 133

Acknowledgments 133

References 133

6 Approaches to Overcome the Resolution Problem in Incoherent Digital Holography 135

Joseph Rosen, Natan T. Shaked, Barak Katz, and Gary Brooker

6.1 Introduction 135

6.2 Digital Incoherent Protected Correlation Holograms 136

6.3 Off-Axis Optical Scanning Holography 142

6.4 Synthetic Aperture with Fresnel Elements 147

6.5 Summary 159

Acknowledgments 160

References 160
7 Managing Digital Holograms and the Numerical Reconstruction Process for Focus Flexibility 163
Melania Paturzo and Pietro Ferraro
7.1 Introduction 163
7.2 Fresnel Holograms: Linear Deformation 165
7.3 Fresnel Holograms: Quadratic and Polynomial Deformation 168
7.4 Fourier Holograms: Quadratic Deformation 170
7.5 Simultaneous Multiplane Imaging in DH 172
7.6 Summary 175
References 176

8 Three-Dimensional Particle Control by Holographic Optical Tweezers 179
Mike Woerdemann, Christina Alpmann, and Cornelia Denz
8.1 Introduction 179
8.2 Controlling Matter at the Smallest Scales 180
8.2.1 Applications of Optical Tweezers 181
8.2.2 Dynamic Optical Tweezers 181
8.3 Holographic Optical Tweezers 183
8.3.1 Diffractive Optical Elements 183
8.3.2 Iterative Algorithms 184
8.3.3 Experimental Implementation 185
8.4 Applications of Holographic Optical Tweezers 187
8.4.1 Colloidal Sciences 187
8.4.2 Full Three-Dimensional Control over Rod-Shaped Bacteria 189
8.4.3 Managing Hierarchical Supramolecular Organization 190
8.5 Tailored Optical Landscapes 192
8.5.1 Nondiffracting Beams 193
8.5.1.1 Mathieu Beams 196
8.5.2 Self-Similar Beams 197
8.5.2.1 Ince-Gaussian Beams 198
8.6 Summary 200
References 200

9 The Role of Intellectual Property Protection in Creating Business in Optical Metrology 207
Nadya Reingand
9.1 Introduction 207
9.2 Types of Intellectual Property Relevant to Optical Metrology 208
9.3 What Kind of Business Does Not Need IP Protection? 210
9.4 Does IP Protect Your Product from Counterfeiting? 211
9.5 Where to Protect Your Business? 212
9.6 International Patent Organizations 212
9.7 Three Things Need to Be Done Before Creating Business 214
9.7.1 Prior Art Search 214
10 On the Difference between 3D Imaging and 3D Metrology for Computed Tomography 225
Daniel Weiß and Michael Totzeck
10.1 Introduction 225
10.2 General Considerations of 3D Imaging, Inspection, and Metrology 226
10.2.1 3D Imaging 226
10.2.2 3D Inspection 227
10.2.3 3D Metrology 229
10.3 Industrial 3D Metrology Based on X-ray Computed Tomography 229
10.3.1 X-Ray Cone-Beam Computed Tomography 230
10.3.1.1 Two-Dimensional Image Formation 230
10.3.1.2 Imaging Geometries and 3D Reconstruction 231
10.3.2 X-Ray CT-Based Dimensional Metrology 232
10.3.2.1 Why CT Metrology? 232
10.3.2.2 Surface Extraction from 3D Absorption Data 232
10.3.3 Device Imperfections and Artifacts 233
10.3.3.1 Geometrical Alignment of the Components 233
10.3.3.2 Beam Hardening 233
10.3.4 Standards for X-Ray CT-Based Dimensional Metrology 235
10.3.4.1 Length Measurement Error and Scanning Errors of Form and Size 235
10.3.4.2 Dependence on Material and Geometry 237
10.4 Conclusions 237
References 238

11 Coherence Holography: Principle and Applications 239
Mitsuo Takeda, Wei Wang, and Dinesh N. Naik
11.1 Introduction 239
11.2 Principle of Coherence Holography 240
11.2.1 Reciprocity in Spatial Coherence and Hologram Recording 240
11.2.2 Similarity between the Diffraction Integral and van Cittert–Zernike Theorem 241
11.3 Gabor-Type Coherence Holography Using a Fizeau Interferometer 241
11.4 Leith-Type Coherence Holography Using a Sagnac Interferometer 243
11.5 Phase-Shift Coherence Holography 246
11.6 Real-Time Coherence Holography 247
Contents

11.7 Application of Coherence Holography: Dispersion-Free Depth Sensing with a Spatial Coherence Comb 248

11.8 Conclusion 252

Acknowledgments 252

References 252

12 Quantitative Optical Microscopy at the Nanoscale: New Developments and Comparisons 255

Bernd Bodermann, Egbert Buhr, Zhi Li, and Harald Bosse

12.1 Introduction 255

12.2 Quantitative Optical Microscopy 257

12.2.1 Metrological Traceability 257

12.2.2 Measurands and Measurement Methods 260

12.2.3 Image Signal Modeling 261

12.2.4 Experimental Aspects 263

12.2.5 Measurement Uncertainty 265

12.3 Comparison Measurements 268

12.4 Recent Development Trends: DUV Microscopy 271

12.4.1 Light Source and Coherence Reduction 274

12.4.2 Illumination System 275

12.4.3 Imaging Configuration 276

12.5 Points to Address for the Further Development of Quantitative Optical Microscopy 278

References 279

13 Model-Based Optical Metrology 283

Xavier Colonna de Lega

13.1 Introduction 283

13.2 Optical Metrology 283

13.3 Modeling Light–Sample Interaction 284

13.3.1 From Light Detection to Quantitative Estimate of a Measurand 284

13.3.2 Two Types of Light–Sample Interaction Models 285

13.4 Forward Models in Optical Metrology 287

13.5 Inverse Models in Optical Metrology 290

13.5.1 Wave Front Metrology 290

13.5.2 Thin-Film Structures Metrology 291

13.5.3 Unresolved Structures Metrology 295

13.6 Confidence in Inverse Model Metrology 298

13.6.1 Modeling Pitfalls 299

13.6.2 Sensitivity Analysis 300

13.6.3 Validation of the Overall Tool Capability 300

13.7 Conclusion and Perspectives 301

References 302
Contents

14 Advanced MEMS Inspection by Direct and Indirect Solution Strategies

Ryszard J. Pryputniewicz

- 14.1 Introduction 305
- 14.2 ACES Methodology 307
 - 14.2.1 Computational Solution 308
 - 14.2.2 Experimental Solution Based on Optoelectronic Methodology 309
 - 14.2.2.1 The OELIM System 312
- 14.3 MEMS Samples Used 314
- 14.4 Representative Results 317
 - 14.4.1 Deformations of a Microgyroscope 317
 - 14.4.2 Functional Operation of a Microaccelerometer 319
 - 14.4.3 Thermomechanical Deformations of a Cantilever Microcontact 319
- 14.5 Conclusions and Recommendations 322
- Acknowledgments 323
- References 323

15 Different Ways to Overcome the Resolution Problem in Optical Micro and Nano Metrology

Wolfgang Osten

- 15.1 Introduction 327
- 15.2 Physical and Technical Limitations in Optical Metrology 328
 - 15.2.1 Optical Metrology as an Identification Problem 329
 - 15.2.2 Diffraction-Limited Lateral Resolution in Optical Imaging 331
 - 15.2.3 Diffraction-Limited Depth of Focus in Optical Imaging 333
 - 15.2.4 Space-Bandwidth Product of Optical Imaging Systems 333
- 15.3 Methods to Overcome the Resolution Problem in Optical Imaging and Metrology 334
 - 15.3.1 New Strategies for the Solution of Identification Problems 335
 - 15.3.1.1 Active Measurement Strategies 335
 - 15.3.1.2 Model-Based Reconstruction Strategies 336
 - 15.3.1.3 Sensor Fusion Strategies 337
 - 15.3.2 Different Approaches for Resolution Enhancement of Imaging Systems 338
 - 15.3.2.1 Conventional Approaches to Achieve the Resolution Limit 340
 - 15.3.2.2 Unconventional Approaches to Break the Resolution Limit 340
 - 15.4 Exemplary Studies on the Performance of Various Inspection Strategies 343
 - 15.4.1 Model-Based Reconstruction of Sub-λ Features 343
 - 15.4.1.1 The Application of Scatterometry for CD-Metrology 343
 - 15.4.1.2 Model-Based and Depth-Sensitive Fourier Scatterometry for the Characterization of Periodic Sub-100 nm Structures 348
 - 15.4.2 High-Resolution Measurement of Extended Technical Surfaces with Multiscale Sensor Fusion 355

15.5 Conclusion 360
Acknowledgments 362
References 362

16 Interferometry in Harsh Environments 369
Armando Albertazzi G. Jr
16.1 Introduction 369
16.2 Harsh Environments 369
16.3 Harsh Agents 370
16.3.1 Temperature 370
16.3.2 Humidity 372
16.3.3 Atmosphere and Pressure 373
16.3.4 Shock and Vibration 374
16.3.5 Radiation and Background Illumination 374
16.4 Requirements for Portable Interferometers 375
16.4.1 Robustness 375
16.4.2 Flexibility 376
16.4.3 Compactness 376
16.4.4 Stability 376
16.4.5 Friendliness 376
16.4.6 Cooperativeness 377
16.5 Current Solutions 377
16.5.1 Isolation 377
16.5.1.1 Atmosphere Isolation 377
16.5.1.2 Temperature Isolation 378
16.5.1.3 Radiation Isolation 378
16.5.1.4 Vibration Isolation 378
16.5.2 Robustness 379
16.6 Case Studies 381
16.6.1 Dantec ESPI Strain Sensor (Q-100) 382
16.6.2 Monolitic GI/DSPI/DHI Sensor 382
16.6.3 ESPI System for Residual Stresses Measurement 384
16.6.4 Pixelated Phase-Mask Dynamic Interferometer 385
16.6.5 Digital Holographic Microscope 386
16.6.6 Shearography 387
16.6.7 Fiber-Optic Sensors 388
16.7 Closing Remarks 389
16.7.1 Summary 389
16.7.2 A Quick Walk into the Future 390
References 390

17 Advanced Methods for Optical Nondestructive Testing 393
Ralf B. Bergmann and Philipp Huke
17.1 Introduction 393
17.2 Principles of Optical Nondestructive Testing Techniques (ONDTs) 393
17.2.1 Material or Object Properties 394
17.2.2 Application of Thermal or Mechanical Loads for NDT 395
17.2.3 Selected Measurement Techniques Suitable for Optical NDT 396
17.2.4 Comparison of Properties of Selected NDT Techniques 397
17.3 Optical Methods for NDT 399
17.3.1 Thermography 399
17.3.2 Fringe Reflection Technique (FRT) 399
17.3.2.1 Principle of FRT 400
17.3.2.2 Experimental Results 401
17.3.3 Digital Speckle Shearography 402
17.3.3.1 Principle of Shearography 402
17.3.3.2 Experimental Results 402
17.3.4 Laser Ultrasound 404
17.3.4.1 Principle of Operation 404
17.3.4.2 Experimental Results 406
17.4 Conclusions and Perspectives 408
Acknowledgments 409
References 409

18 Upgrading Holographic Interferometry for Industrial Application
by Digital Holography 413
Zoltán Füzessy, Ferenc Gyimesi, and Venczel Borbély
18.1 Introduction 413
18.2 Representative Applications 414
18.3 Contributions to Industrial Applications by Analog Holography 414
18.3.1 Portable Interferometer in the Days of Analog Holographic
Interferometry 414
18.3.2 Difference Holographic Interferometry (DHI) – Technique for
Comparison and Fringe Compensation 418
18.3.3 Straightforward Way of Managing Dense Holographic Fringe
Systems 423
18.3.3.1 Upper Limit of the Evaluating Camera–Computer System 424
18.3.3.2 Measuring Range of Holographic Interferometry 425
18.3.3.3 PUZZLE Read-Out Extension Technique – for Speckled
Interferograms 426
18.4 Contributions to Industrial Applications by Digital Holography 428
18.4.1 Scanning and Magnifying at Hologram Readout 429
18.4.2 Digital Holography for Residual Stress Measurement 431
18.5 Conclusion and a Kind of Wish List 434
Acknowledgments 434
References 434

Color Plates 439

Index 475