Sensors for Mechatronics

Paul P.L. Regtien
Hengelo
The Netherlands
Contents

Preface xi

1 Introduction 1
 1.1 Sensors in Mechatronics 1
 1.1.1 Definitions 1
 1.1.2 Sensor Development 3
 1.1.3 Sensor Nomenclature 4
 1.1.4 Sensors and Information 6
 1.2 Selection of Sensors 13

2 Sensor Fundamentals 19
 2.1 Physical Quantities 19
 2.1.1 Classification of Quantities 19
 2.1.2 Relations Between Quantities 23
 2.2 Sensor Classifications 26
 2.2.1 Classification Based on Measurand and Application Field 26
 2.2.2 Classification Based on Port Models 26
 2.2.3 Classification Based on Conversion Principles 30
 2.2.4 Classification According to Energy Domain 31

3 Uncertainty Aspects 35
 3.1 Sensor Specification 35
 3.1.1 Sensitivity 36
 3.1.2 Non-linearity and Hysteresis 36
 3.1.3 Resolution 37
 3.1.4 Accuracy 38
 3.1.5 Offset and Zero Drift 38
 3.1.6 Noise 38
 3.1.7 Response Time 39
 3.1.8 Frequency Response and Bandwidth 39
 3.1.9 Operating Conditions 39
 3.2 Sensor Error Reduction Techniques 40
 3.2.1 Compensation 41
 3.2.2 Feedback Methods 44
 3.2.3 Filtering 47
 3.2.4 Modulation 48
 3.2.5 Demodulation 51
 3.2.6 Correction Methods 53
Contents

4 Resistive Sensors

4.1 Resistivity and Resistance 57
4.2 Potentiometric Sensors 58
 4.2.1 Construction and General Properties 58
 4.2.2 Electrical Characteristics 59
 4.2.3 Interfacing 61
 4.2.4 Contact-Free Potentiometers 64
 4.2.5 Applications of Potentiometers 66
4.3 Strain Gauges 67
 4.3.1 Construction and Properties 67
 4.3.2 Interfacing 71
 4.3.3 Applications of Strain Gauges 73
4.4 Piezoresistive Sensors 77
 4.4.1 Piezoresistivity 77
 4.4.2 Micromachined Piezoresistive Sensors 81
 4.4.3 Applications of Piezoresistive Sensors 83
4.5 Magnetoresistive Sensors 87
 4.5.1 Magnetoresistivity 87
 4.5.2 Applications of Magnetoresistive Sensors 91
4.6 Thermoresistive Sensors 91
 4.6.1 Thermoresistivity 91
 4.6.2 Resistance Thermometer 92
 4.6.3 Thermistors 93
4.7 Optoresistive Sensors 95

5 Capacitive Sensors

5.1 Capacitance and Permittivity 101
5.2 Basic Configurations of Capacitive Sensors 105
 5.2.1 Flat-Plate Capacitive Sensors 105
 5.2.2 Multiplate Capacitive Sensors 109
 5.2.3 Silicon Capacitive Sensors 110
5.3 Interfacing 113
5.4 Applications 116
 5.4.1 Capacitive Sensors for Position- and Force-Related Quantities 116
 5.4.2 Particular Applications 118

6 Inductive and Magnetic Sensors

6.1 Magnetic and Electromagnetic Quantities 125
 6.1.1 Magnetic Field Strength, Magnetic Induction and Flux 125
 6.1.2 Permeability 127
 6.1.3 Eddy Currents 128
 6.1.4 Magnetic Resistance (Reluctance) and Self-Inductance 128
 6.1.5 Magnetostriction 129
6.2 Magnetic Field Sensors
6.2.1 Coil
6.2.2 Hall Plate Sensors
6.2.3 Fluxgate Sensors
6.3 Magnetic and Induction Based Displacement and Force Sensors
6.3.1 Magnetic Proximity Switches
6.3.2 Inductive Proximity and Displacement Sensors
6.3.3 Eddy Current Displacement Sensors
6.3.4 Variable Differential Transformers
6.3.5 Resolvers and Synchros
6.3.6 Magnetostriuctive or Elastomagnetic Sensors
6.4 Applications
6.4.1 Interfacing Inductive Sensors
6.4.2 Contact-Free Sensing Using Magnetic and Inductive Sensors
6.4.3 Applications of Variable Reluctance and Eddy Current Sensors
6.4.4 Applications of Other Inductive Sensors

7 Optical Sensors
7.1 Electro-Optical Components
7.1.1 Light Emitters
7.1.2 Light Sensors
7.1.3 Position Sensitive Diode
7.2 Optical Displacement Sensors
7.2.1 Intensity Measurement
7.2.2 Triangulation
7.2.3 Optical Encoders
7.2.4 Interferometry
7.2.5 Time-of-Flight
7.3 Interfacing
7.3.1 LEDs and Photo Diodes
7.3.2 Interfacing PSDs
7.4 Applications
7.4.1 Linear Displacement Sensing
7.4.2 Angular Displacement Sensing
7.4.3 Object Tracking
7.4.4 Object Shape
7.4.5 Navigation
7.4.6 Force, Torque and Strain Sensing

8 Piezoelectric Sensors
8.1 Piezoelectricity
8.1.1 Piezoelectric Materials
8.1.2 Piezoelectric Parameters
8.2 Force, Pressure and Acceleration Sensors 228
 8.2.1 Construction 228
 8.2.2 Characteristics of Accelerometers 230
8.3 Interfacing 232
8.4 Applications 234
 8.4.1 Stress and Pressure 235
 8.4.2 Acceleration 235
 8.4.3 Tactile Sensors 236

9 Acoustic Sensors 241
 9.1 Properties of the Acoustic Medium 241
 9.1.1 Sound Intensity and Pressure 242
 9.1.2 Sound Propagation Speed 242
 9.1.3 Acoustic Damping 243
 9.1.4 Acoustic Impedance 244
 9.2 Acoustic Sensors 245
 9.2.1 General Properties 245
 9.2.2 Electrostatic Transducers 248
 9.2.3 Piezoelectric Transducers 249
 9.2.4 Arrays 251
 9.3 Measurement Methods 252
 9.3.1 Burst 253
 9.3.2 Continuous Sine Wave (CW) 255
 9.3.3 Frequency-Modulated Continuous Waves (FMCW) 256
 9.3.4 Other Signal Types 259
 9.4 Applications 259
 9.4.1 Navigation 259
 9.4.2 Inspection 264

Appendix A Symbols and Notations 275
 A.1 The Electrical Domain 275
 A.2 The Thermal Domain 277
 A.3 The Mechanical Domain 277
 A.4 The Optical Domain 280
 A.4.1 Optical Quantities 280
 A.4.2 Radiant Energy from a Unit Surface
 with Lambertian Emission 283
 A.4.3 Derivation of Relations Between Intensity and Distance 284

Appendix B Relations Between Quantities 287
 B.1 Generalized Equations 287
 B.2 Application to Four Domains 289
 B.3 Heckmann Diagrams 292
<table>
<thead>
<tr>
<th>Appendix C Basic Interface Circuits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Operational Amplifier</td>
<td>295</td>
</tr>
<tr>
<td>C.2 Current-to-Voltage Converter</td>
<td>297</td>
</tr>
<tr>
<td>C.3 Non-Inverting Amplifier</td>
<td>298</td>
</tr>
<tr>
<td>C.4 Inverting Amplifier</td>
<td>300</td>
</tr>
<tr>
<td>C.5 Comparator and Schmitttrigger</td>
<td>301</td>
</tr>
<tr>
<td>C.5.1 Comparator</td>
<td>301</td>
</tr>
<tr>
<td>C.5.2 Schmitttrigger</td>
<td>302</td>
</tr>
<tr>
<td>C.6 Integrator and Differentiator</td>
<td>303</td>
</tr>
<tr>
<td>C.6.1 Integrator</td>
<td>304</td>
</tr>
<tr>
<td>C.6.2 Differentiator</td>
<td>304</td>
</tr>
<tr>
<td>C.7 Filters</td>
<td>307</td>
</tr>
</tbody>
</table>