Contents

3.2 Experimental characterisation of stiffness and strength of bolted joints 82
3.3 Tests on tension joints 88
3.4 Analysis of stresses, deformations and bolt load-sharing in tension joints 96
3.5 Design guidance for tension joints 101
3.6 Research needs and future prospects 105
3.7 References 108

4 Bolt-hole clearance effects in composite joints 112
M. A. McCarthy, C. T. McCarthy and W. F. Stanley, University of Limerick, Ireland
4.1 Introduction 112
4.2 Single-bolt joints 112
4.3 Multi-bolt joints 140
4.4 Conclusions 183
4.5 References 183

5 Stress analysis of bolted composite joints under multiaxial loading 186
E. Madenci, A. Barut and I. Guven, University of Arizona, USA
5.1 Introduction 186
5.2 Bolt load distribution 187
5.3 Numerical results 201
5.4 Conclusions 206
5.5 References 207

6 Strength prediction of bolted joints in carbon fibre reinforced polymer (CFRP) composites 208
F-X. Irisarri, F. Laurin and N. Carrere, ONERA, France
6.1 Introduction 208
6.2 Observed failure mechanisms 209
6.3 Physically based failure modelling 212
6.4 Strength analysis at the coupon level 219
6.5 Dealing with the component level 229
6.6 Conclusion and future trends 238
6.7 Acknowledgement 239
6.8 References 240

7 Fatigue of bolted composite joints 245
J. SchöN, Swedish Defence Research Agency, Sweden
7.1 Introduction 245
7.2 Coefficient of friction 246
7.3 Clamping force 248
7.4 Hole wear 248
7.5 Fastener failure 251

© Woodhead Publishing Limited, 2011
7.6 Shear-out 253
7.7 Net-section failure 253
7.8 Joint design 253
7.9 References 254

8 Influence of dynamic loading on fastened composite joints 257
G. M. Pearce and D. W. Kelly, University of New South Wales, Australia, A. F. Johnson, German Aerospace Centre (DLR), Germany and R. S. Thomson, Cooperative Research Centre for Advanced Composite Structures (CRC-ACS), Australia
8.1 Introduction and background 257
8.2 Test methods 259
8.3 Single fastener testing 262
8.4 Multiple fastener testing 272
8.5 Simulation methods 277
8.6 Future trends 290
8.7 Conclusion 291
8.8 Acknowledgements 292
8.9 References 292

9 Effects of temperature on the response of composite bolted joints 295
Y. Takao, Kyushu University, Japan
9.1 Introduction 295
9.2 Effects of temperature on strength 297
9.3 Damage evolution 306
9.4 Analytical works 316
9.5 Conclusions 317
9.6 Acknowledgements 317
9.7 References 318

Part II Bonded joints 321

10 Calculation of strain energy release rates for bonded composite joints with a prescribed crack 323
C. Yang, Wichita State University, USA
10.1 Introduction 323
10.2 Strain energy release rate 326
10.3 Calculating strain energy release rate using finite element methods 327
10.4 Calculating strain energy release rate using an analytical approach 331
10.5 References 339
Contents

11 Simulating fracture in bonded composite joints using cohesive zone models
M. Alfano and F. Furciule, University of Calabria, Italy

11.1 Introduction

11.2 Implementation of a potential-based cohesive model in Abaqus Standard framework

11.3 Analysis of debonding in AA6082T6/epoxy T-peel joints

11.4 Conclusions and future trends

11.5 References

12 Simulating fatigue failure in bonded composite joints using a modified cohesive zone model
A. Pirondi and F. Moroni, University of Parma, Italy

12.1 Introduction to the simulation of fatigue in bonded joints

12.2 Simulation of fatigue crack growth with the cohesive zone model: basic concept and literature works

12.3 Development of a two-dimensional cohesive zone model for the prediction of the fatigue crack growth under mode I loading.

12.4 Two-dimensional cohesive zone model for the prediction of fatigue crack growth under mixed mode I/II loading

12.5 Simulation of fatigue crack growth with crack length jumps due to static overloads

12.6 Conclusions

12.7 References

13 Strength of bonded overlap composite joints in marine applications
H. Osnes and G. O. Guthu, University of Oslo, Norway, and D. McGeorge, Det Norske Veritas AS, Norway

13.1 Introduction

13.2 Design recommendations

13.3 Experimental studies on strength of adhesively bonded joints

13.4 General description of the response of bonded overlap joints to mechanical loads

13.5 Strength of materials approaches

13.6 Fracture mechanics approaches

13.7 Discussion, conclusions and future trends

13.8 Acknowledgements

13.9 References

© Woodhead Publishing Limited, 2011
14 Advanced modeling of the behaviour of bonded composite joints in aerospace applications 423
J. Ahn, General Atomics Aeronautical Systems, USA, and S. Stapleton and A. M. Waas, University of Michigan, USA
14.1 Introduction 423
14.2 Bonded joints 425
14.3 Cohesive zone model (CZM) based bonded joint analysis 428
14.4 Design perspective 432
14.5 References 434

15 Mixed mode energy release rates for bonded composite joints 435
S. A. Brown, L. Tong and Q. Luo, University of Sydney, Australia, and X-J. Gong, University of Burgundy, France
15.1 Introduction 435
15.2 Basic formulae of mixed mode energy release rates 437
15.3 Parametric case studies 440
15.4 Comparison with FEA results 447
15.5 Experimental validation 453
15.6 Conclusions 461
15.7 Acknowledgements 461
15.8 References 462

16 Stress analysis of bonded patch and scarf repairs in composite structures 463
E. Madenci, A. Barut and I. Guven, University of Arizona, USA
16.1 Introduction 463
16.2 Scarf joint and repair descriptions 464
16.3 Methodology 467
16.4 Numerical results 478
16.5 Conclusions 482
16.6 References 483

17 High strain rate behaviour of bonded composite joints 484
D. Elder and B. Qi, Cooperative Research Centre for Advanced Composite Structures (CRC-ACS), Australia, S. Feih, RMIT University, Australia
17.1 Introduction 484
17.2 Typical rubber-modified epoxy adhesive performance 486
17.3 Dynamic joint failure 488
17.4 Testing and analysis of mixed and mode II specimens 492
17.5 Testing and analysis of scarf joint failure 496
17.6 Conclusion 504
17.7 Acknowledgements 505
17.8 References 505

Index 508