RHEOLOGY
Concepts, Methods, and Applications
2nd Edition

Prof. Dr. Alexander Ya. Malkin
Academy of Sciences, Institute of Petrochemical Synthesis
Moscow, Russia

Prof. Dr. Avraam I Isayev
The University of Akron, Department of Polymer Engineering
Akron, Ohio, USA

ChemTec PUBLISHING

Toronto 2012
Table of Contents

Preface xi
Preface (2nd Edition) xiii

INTRODUCTION. RHEOLOGY: SUBJECT AND GOALS 1

Literature 6

1 CONTINUUM MECHANICS AS A FOUNDATION OF RHEOLOGY 9

1.1 Stresses 9
1.1.1 General theory 9
1.1.2 Law of equality of conjugated stresses 12
1.1.3 Principal stresses 12
1.1.4 Invariants of a stress tensor 14
1.1.5 Hydrostatic pressure – spherical tensor and deviator 16
1.1.6 Equilibrium (balance) equations 19
1.2 Deformations 21
1.2.1 Deformations and displacements 21
1.2.1.1 Deformations 21
1.2.1.2 Displacements 24
1.2.2 Infinitesimal deformations: principal values and invariants 26
1.2.3 Large (finite) deformations 27
1.2.4 Special cases of deformations – uniaxial elongation and simple shear 30
1.2.4.1 Uniaxial elongation and Poisson’s ratio 30
1.2.4.2 Simple shear and pure shear 31
1.3 Kinematics of deformations 34
1.3.1 Rates of deformation and vorticity 34
1.3.2 Deformation rates when deformations are large 35
1.4 Summary – continuum mechanics in rheology 36
1.4.1 General principles 36
1.4.2 Objects of continuum as tensors 37

References 39

Questions for Chapter 1 40

2 VISCOELASTICITY 43

2.1 Basic experiments 43
2.1.1 Creep (retarded deformation) 43
2.1.2 Relaxation 44
2.1.3 Fading memory 46
2.2 Relaxation and creep – spectral representation. Dynamic functions 47
2.2.1 Retardation and relaxation spectra – definitions 47
2.2.2 Dynamic functions 50
2.3 Model interpretations 55
2.3.1 Basic mechanical models 55
2.3.2 Complicated mechanical models – differential rheological equations 59
2.3.3 Non-mechanical models 60
2.4 Superposition – The Boltzmann-Volterra principle 61
2.4.1 Integral formulation of the superposition principle 61
2.4.2 Superposition principle expressed via spectra 64
2.4.3 Simple transient modes of deformation 65
2.4.3.1 Relaxation after sudden deformation 65
2.4.3.2 Developing stresses at constant shear rate 65
2.4.3.3 Relaxation after steady shear flow 66
2.4.3.4 Relationship between relaxation and creep functions 66
2.4.3.5 Relaxation function and large deformations 67
2.5 Relationships among viscoelastic functions 69
2.5.1 Dynamic functions - relaxation, creep, and spectra 69
2.5.2 Constants and viscoelastic functions 71
2.5.3 Calculation of a relaxation spectrum 73
2.5.3.1 Introduction - general concept 73
2.5.3.2 Kernel approximation - finding a continuous spectrum 75
2.5.3.3 Computer-aided methods for a discrete spectrum 76
2.6 Viscoelasticity and molecular models 78
2.6.1 Molecular movements of an individual chain 78
2.6.1.1 A spring-and-bead model (“free draining chain”) 78
2.6.1.2 Model of a non-draining coil 81
2.6.1.3 Model of a rotating coil 82
2.6.2 Relaxation properties of concentrated polymer solutions and melts 82
2.6.2.1 Concept of entanglements 82
2.6.2.2 Two-part distribution of friction coefficient 83
2.6.2.3 Non-equivalent friction along a chain 83
2.6.2.4 Viscoelastic entanglements 84
2.6.2.5 Rubber-like network 84
2.6.2.6 “Tube” (reptation) model 85
2.6.2.7 Some conclusions 86
2.6.3 Viscoelasticity of polydisperse polymers 87
2.7 Time-temperature superposition. Reduced (“master”) viscoelastic curves 91
2.7.1 Superposition of experimental curves 91
2.7.2 Master curves and relaxation states 96
2.7.3 “Universal” relaxation spectra 98
2.8 Non-linear effects in viscoelasticity 99
2.8.1 Experimental evidences 99
2.8.1.1 Non-Newtonian viscosity 99
Table of Contents

2.8.1.2 Non-Hookean behavior of solids 100
2.8.1.3 Non-linear creep 100
2.8.1.4 Non-linear relaxation 102
2.8.1.5 Non-linear periodic measurements 105
2.8.2 Linear - non-linear correlations 109
2.8.3 Rheological equations of state for non-linear viscoelastic behavior 110
2.8.3.1 The K-BKZ model 112
2.8.3.2 The Wagner models 112
2.8.3.2 The Leonov model 114
2.8.3.4 The Marrucci models 116
2.8.4 Comments – constructing non-linear constitutive equations and experiment 116

References 119

Questions for Chapter 2 124

3 LIQUIDS 127

3.1 Newtonian and non-Newtonian liquids. Definitions 127
3.2 Non-Newtonian shear flow 131
3.2.1 Non-Newtonian behavior of viscoelastic polymeric materials 131
3.2.2 Non-Newtonian behavior of structured systems - plasticity of liquids 133
3.2.3 Viscosity of anisotropic liquids 138
3.3 Equations for viscosity and flow curves 141
3.3.1 Introduction - the meaning of viscosity measurement 141
3.3.2 Power-law equations 142
3.3.3 Equations with yield stress 143
3.3.4 Basic dependencies of viscosity 146
3.3.4.1 Viscosity of polymer melts 146
3.3.4.2 Viscosity of polymer solutions 147
3.3.4.3 Viscosity of suspensions and emulsions 152
3.3.5 Effect of molecular weight distribution on non-Newtonian flow 154
3.4 Elasticity in shear flows 156
3.4.1 Rubbery shear deformations - elastic recoil 156
3.4.2 Normal stresses in shear flow 159
3.4.2.1 The Weissenberg effect 159
3.4.2.2 First normal stress difference - quantitative approach 160
3.4.2.3 Second normal stress difference 162
3.4.3 Normal stresses and elasticity 162
3.4.4 Die swell 165
3.5 Structure rearrangements induced by shear flow 166
3.5.1 Transient deformation regimes 166
3.5.2 Thixotropy and rheopexy 169
3.5.3 Shear induced phase transitions 175
3.6 Limits of shear flow – instabilities 180
3.6.1 Inertial turbulency 180
3.6.2 The Toms effect 181
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.3 Instabilities in flow of elastic liquids</td>
<td>183</td>
</tr>
<tr>
<td>3.6.3.1 Dynamic structure formation and secondary flows in elastic fluids</td>
<td>183</td>
</tr>
<tr>
<td>3.6.3.2 Secondary flows in the flow of elastic fluids</td>
<td>184</td>
</tr>
<tr>
<td>3.6.3.3 Shear banding</td>
<td>195</td>
</tr>
<tr>
<td>3.7 Extensional flow</td>
<td>196</td>
</tr>
<tr>
<td>3.7.1 Model experiments – uniaxial flow</td>
<td>196</td>
</tr>
<tr>
<td>3.7.2 Model experiments – rupture</td>
<td>199</td>
</tr>
<tr>
<td>3.7.3 Extension of industrial polymers</td>
<td>203</td>
</tr>
<tr>
<td>3.7.3.1 Multiaxial elongation</td>
<td>204</td>
</tr>
<tr>
<td>3.7.4 The tubeless siphon effect</td>
<td>205</td>
</tr>
<tr>
<td>3.7.5 Instabilities in extension</td>
<td>206</td>
</tr>
<tr>
<td>3.7.5.1 Phase transitions in extension</td>
<td>206</td>
</tr>
<tr>
<td>3.7.5.2 Rayleigh instability</td>
<td>207</td>
</tr>
<tr>
<td>3.7.5.3 Instabilities in extension of a viscoelastic thread</td>
<td>208</td>
</tr>
<tr>
<td>3.8 Conclusions – real liquid is a complex liquid</td>
<td>209</td>
</tr>
<tr>
<td>References</td>
<td>211</td>
</tr>
<tr>
<td>Questions for Chapter 3</td>
<td>219</td>
</tr>
</tbody>
</table>

4 SOLIDS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction and definitions</td>
<td>223</td>
</tr>
<tr>
<td>4.2 Linear elastic (Hookean) materials</td>
<td>224</td>
</tr>
<tr>
<td>4.3 Linear anisotropic solids</td>
<td>229</td>
</tr>
<tr>
<td>4.4 Large deformations in solids and non-linearity</td>
<td>231</td>
</tr>
<tr>
<td>4.4.1 A single-constant model</td>
<td>231</td>
</tr>
<tr>
<td>4.4.2 Multi-constant models</td>
<td>236</td>
</tr>
<tr>
<td>4.4.2.1 Two-constant potential function</td>
<td>236</td>
</tr>
<tr>
<td>4.4.2.2 Multi-member series</td>
<td>238</td>
</tr>
<tr>
<td>4.4.2.3 General presentation</td>
<td>240</td>
</tr>
<tr>
<td>4.4.2.4 Elastic potential of the power-law type</td>
<td>241</td>
</tr>
<tr>
<td>4.4.3 The Poynting effect</td>
<td>242</td>
</tr>
<tr>
<td>4.5 Limits of elasticity</td>
<td>243</td>
</tr>
<tr>
<td>4.5.1 Standard experiment – main definitions</td>
<td>243</td>
</tr>
<tr>
<td>4.5.2 Plasticity</td>
<td>244</td>
</tr>
<tr>
<td>4.5.3 Criteria of plasticity and failure</td>
<td>245</td>
</tr>
<tr>
<td>4.5.3.1 Maximum shear stress</td>
<td>245</td>
</tr>
<tr>
<td>4.5.3.2 The intensity of shear stresses (“energetic” criterion)</td>
<td>246</td>
</tr>
<tr>
<td>4.5.3.3 Maximum normal stress</td>
<td>247</td>
</tr>
<tr>
<td>4.5.3.4 Maximum deformation</td>
<td>247</td>
</tr>
<tr>
<td>4.5.3.5 Complex criteria</td>
<td>247</td>
</tr>
<tr>
<td>4.5.4 Structure effects</td>
<td>249</td>
</tr>
<tr>
<td>4.5.4.1 Strengthening</td>
<td>250</td>
</tr>
<tr>
<td>4.5.4.2 Thixotropy</td>
<td>251</td>
</tr>
<tr>
<td>References</td>
<td>251</td>
</tr>
<tr>
<td>Questions for Chapter 4</td>
<td>252</td>
</tr>
</tbody>
</table>
5 RHEOMETRY. EXPERIMENTAL METHODS

5.1 Introduction – Classification of experimental methods
5.2 Capillary viscometry
5.2.1 Basic theory
5.2.2 Corrections
5.2.2.1 Kinetic correction
5.2.2.2 Entrance correction
5.2.2.3 Pressure losses in a reservoir of viscometer
5.2.2.4 Temperature correction
5.2.2.5 Pressure correction
5.2.2.6 Correction for slip at a wall
5.2.2.7 Adsorption on a channel surface
5.2.3 Flow in incompletely filled capillary
5.2.3.1 Motion under action of gravitation forces
5.2.3.2 Motion caused by surface tension forces
5.2.4 Limits of capillary viscometry
5.2.5 Non-viscometric measurements using capillary viscometers
5.2.6 Capillary viscometers
5.2.6.1 Classification of the basic types of instruments
5.2.6.2 Viscometers with the assigned load
5.2.6.3 Cup viscometers
5.2.6.4 Glass viscometers
5.2.7 Viscometers with controlled flow rate
5.2.7.1 Instruments with a power drive
5.2.7.2 Instruments with hydraulic drive
5.2.7.3 Extrusion rheometers
5.2.7.4 Technological capillary tube viscometers
5.3 Rotational rheometry
5.3.1 Tasks and capabilities of the method
5.3.1.1 Viscometric and non-viscometric measurements
5.3.1.2 The method of a constant frequency of rotation
5.3.1.3 The method of a constant torque
5.3.2 Basic theory of rotational instruments
5.3.2.1 Instruments with coaxial cylinders
5.3.2.2 Instruments with conical surfaces
5.3.2.3 Bi-conical viscometers
5.3.2.4 Disk viscometers
5.3.2.5 Viscometers with spherical surfaces
5.3.2.6 End (bottom) corrections in instruments with coaxial cylinders
5.3.2.7 On a role of rigidity of dynamometer
5.3.2.8 Temperature effects
5.3.3 Limitations of rotational viscometry
5.3.4 Rotational instruments
5.3.4.1 Introduction – general considerations
5.3.4.2 Rheogoniometers and elastoviscometers
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4.3 Viscometers with assigned rotational speed</td>
<td>297</td>
</tr>
<tr>
<td>5.3.4.4 Rotational viscometers for special purposes</td>
<td>299</td>
</tr>
<tr>
<td>5.3.4.5 Rotational instruments for technological purposes</td>
<td>301</td>
</tr>
<tr>
<td>5.3.5 Measuring normal stresses</td>
<td>303</td>
</tr>
<tr>
<td>5.3.5.1 Cone-and-plate technique</td>
<td>303</td>
</tr>
<tr>
<td>5.3.5.2 Plate-and-plate technique</td>
<td>305</td>
</tr>
<tr>
<td>5.3.5.3 Coaxial cylinders technique</td>
<td>305</td>
</tr>
<tr>
<td>5.3.5.4 Hole-pressure effect</td>
<td>306</td>
</tr>
<tr>
<td>5.4 Plastometers</td>
<td>307</td>
</tr>
<tr>
<td>5.4.1 Shear flow plastometers</td>
<td>307</td>
</tr>
<tr>
<td>5.4.2 Squeezing flow plastometers</td>
<td>308</td>
</tr>
<tr>
<td>5.4.3 Method of telescopic shear</td>
<td>310</td>
</tr>
<tr>
<td>5.4.3.1 Telescopic shear penetrometer</td>
<td>311</td>
</tr>
<tr>
<td>5.5 Method of falling sphere</td>
<td>313</td>
</tr>
<tr>
<td>5.5.1 Principles</td>
<td>313</td>
</tr>
<tr>
<td>5.5.1.1 Corrections</td>
<td>314</td>
</tr>
<tr>
<td>5.5.2 Method of rolling sphere</td>
<td>316</td>
</tr>
<tr>
<td>5.5.3 Viscometers with falling sphere</td>
<td>317</td>
</tr>
<tr>
<td>5.5.4 Viscometers with falling cylinder</td>
<td>318</td>
</tr>
<tr>
<td>5.6 Extension</td>
<td>319</td>
</tr>
<tr>
<td>5.6.1 General considerations</td>
<td>319</td>
</tr>
<tr>
<td>5.6.2 Experimental methods</td>
<td>320</td>
</tr>
<tr>
<td>5.6.2.1 The simplest measuring schemes</td>
<td>320</td>
</tr>
<tr>
<td>5.6.2.2 Tension in a controlled regime</td>
<td>321</td>
</tr>
<tr>
<td>5.6.2.3 Tubeless siphon instruments</td>
<td>322</td>
</tr>
<tr>
<td>5.6.2.4 Flow in convergent channels</td>
<td>322</td>
</tr>
<tr>
<td>5.6.2.5 High strain rate methods</td>
<td>323</td>
</tr>
<tr>
<td>5.6.2.6 Capillary breaking elongational rheometry</td>
<td>323</td>
</tr>
<tr>
<td>5.6.3 Biaxial extension</td>
<td>324</td>
</tr>
<tr>
<td>5.7 Measurement of viscoelastic properties by dynamic (oscillation)</td>
<td>325</td>
</tr>
<tr>
<td>methods</td>
<td></td>
</tr>
<tr>
<td>5.7.1 Principles of measurement – homogeneous deformation</td>
<td>325</td>
</tr>
<tr>
<td>5.7.2 Inhomogeneous deformations</td>
<td>327</td>
</tr>
<tr>
<td>5.7.3 Torsion oscillations</td>
<td>329</td>
</tr>
<tr>
<td>5.7.4 Measuring the impedance of a system</td>
<td>331</td>
</tr>
<tr>
<td>5.7.5 Resonance oscillations</td>
<td>332</td>
</tr>
<tr>
<td>5.7.6 Damping (free) oscillations</td>
<td>333</td>
</tr>
<tr>
<td>5.7.7 Wave propagation</td>
<td>336</td>
</tr>
<tr>
<td>5.7.7.1 Shear waves</td>
<td>336</td>
</tr>
<tr>
<td>5.7.7.2 Longitudinal waves</td>
<td>337</td>
</tr>
<tr>
<td>5.7.8 Vibration viscometry</td>
<td>338</td>
</tr>
<tr>
<td>5.7.8.1 Torsion oscillations</td>
<td>341</td>
</tr>
<tr>
<td>5.7.8.2 Oscillation of a disk in liquid</td>
<td>341</td>
</tr>
<tr>
<td>5.7.8.3 Oscillations of sphere</td>
<td>342</td>
</tr>
<tr>
<td>5.7.8.4 Damping oscillations</td>
<td>342</td>
</tr>
</tbody>
</table>
5.7.9 Measuring viscoelastic properties in non-symmetrical flows 343
5.7.10 About experimental techniques 344
5.7.10.1 Rotational instruments 344
5.7.10.2 Devices with electromagnetic excitation 344
5.7.10.3 Torsion pendulums 346
5.8 Physical methods 347
5.8.1 Rheo-optical methods 347
5.8.1.1 Basic remarks 347
5.8.1.2 Stress – optical rules for polymer melts 349
5.8.1.3 Stress-optical rule for polymer solutions 353
5.8.1.4 Viscometers for optical observations 354
5.8.1.5 Polarization methods for measuring stresses 356
5.8.1.6 Visualization of polymer flow in dies 357
5.8.2 Velocimetry 357
5.8.3 Viscometers-calorimeters 358

References 359

Questions for Chapter 5 363

6 APPLICATIONS OF RHEOLOGY 365
6.1 Introduction 365
6.2 Rheological properties of real materials and their characterization 366
6.2.1 Polymer materials 366
6.2.2 Mineral oils and oil-based products 371
6.2.3 Food products 374
6.2.4 Cosmetics and pharmaceuticals 376
6.2.5 Biological fluids 377
6.2.6 Concentrated suspensions 379
6.2.7 Electro- and magneto-rheological materials 381
6.2.8 Concluding remarks 383
6.3 Rheokinetics (chemorheology) and rheokinetic liquids 384
6.3.1 Formulation of problem 384
6.3.2 Linear polymerization 385
6.3.3 Oligomer curing 388
6.3.3.1 Viscosity change and a gel-point 388
6.3.3.2 Curing at high shear rates 390
6.3.3.3 Curing after gel-point 392
6.3.4 Intermolecular transformations 395
6.3.4.1 Polymeric reaction 395
6.3.4.2 Physical transformations 396
6.4 Solution of dynamic problems 396
6.4.1 General formulation 396
6.4.2 Flow through tubes 399
6.4.3 Flow in technological equipment 403
6.4.3.1 Pumping screw 403
6.4.3.2 Calendering and related processes 406
6.4.3.3 Extension-based technologies 408
6.4.3.4 Molding technologies 410
6.4.3.5 Compression molding 411
6.4.3.6 Injection molding 413
6.4.3.7 Injection-compression molding 416

References 417

Questions for Chapter 6 419

NOTATIONS 421

ANSWERS 431

INDEX 463