Edited by
Tapan K. Sau and Andrey L. Rogach

Complex-shaped Metal Nanoparticles

Bottom-Up Syntheses and Applications
With a Foreword by Catherine J. Murphy
Contents

Foreword VII
Preface XVII
List of Contributors XIX

Metal Nanoparticles of Complex Morphologies:
A General Introduction 1
References 5

1 Colloidal Synthesis of Noble Metal Nanoparticles of
Complex Morphologies 7
Tapan K. Sau and Andrey L. Rogach
1.1 Introduction 7
1.2 Classification of Noble Metal Nanoparticles 8
1.3 Synthesis Methodologies 9
1.3.1 Chemical Reduction Method 9
1.3.1.1 Spatially Confined Medium/Template Approach 10
1.3.1.2 Preformed Seed-Mediated Synthesis 15
1.3.1.3 High-Temperature Reduction Method 19
1.3.2 Chemical Transformation Method 19
1.3.2.1 Galvanic Displacement Method 19
1.3.2.2 Etching Method 21
1.3.3 Electrochemical Synthesis 22
1.3.4 Photochemical Method 23
1.3.5 Biosynthesis 24
1.3.6 Postpreparation Separation 25
1.4 Characterization 25
1.5 Thermodynamic–Kinetic Factors and Particle Morphology 29
1.5.1 Nucleation and Growth 29
1.5.1.1 Homogeneous and Heterogeneous Nucleations 29
1.5.1.2 Defects in Seed Crystal 37
1.5.1.3 Growth of Seed Crystal 41
1.5.2 Reaction Parameters 43
3.3.1.1 Pt and Pd Nanoparticles 128
3.3.1.2 Fe Nanoparticles 137
3.3.2 Wet Chemistry Route 137
3.3.2.1 Au Nanoparticles 139
3.3.2.2 Pd and Pd–Au Nanoparticles 141
3.3.2.3 Pt Nanoparticles 144
3.4 Theoretical Simulations of Structural Transformation and Stability of Metal Nanoparticles with High Surface Energy 148
3.4.1 Brief Description of Theoretical Calculation Methods 148
3.4.1.1 First-Principles Methods 148
3.4.1.2 Molecular Dynamics Methods 149
3.4.1.3 Predictions and Limitations of Theoretical Calculations 149
3.4.2 Theoretical Study of Metal Nanoparticles of High Surface Energy 150
3.4.2.1 Pt Nanoparticles 151
3.4.2.2 Pd Nanoparticles 153
3.4.2.3 Au Nanoparticles 155
3.4.2.4 Fe Nanoparticles 157
3.5 Conclusions 160
References 162

4 Shape-Controlled Synthesis of Copper Nanoparticles 167
Wen-Yin Ko and Kuan-JiuLin
4.1 Introduction 167
4.1.1 Zero-Dimensional Nanostructures 167
4.1.2 One-Dimensional Nanostructures 168
4.1.3 Two-Dimensional Nanostructures 169
4.1.4 Complex (3D) Nanostructures 170
4.2 Metallic Copper 172
4.2.1 Significance and Challenges 172
4.2.2 Shape Control of Cu Nanoparticles 172
4.3 Electrodeposition Method for Growth of Cu Nanoparticles of Different Shapes 174
4.3.1 Synthesis and Growth Mechanism of Tetrahedral Metallic Cu 174
4.3.1.1 Synthesis 174
4.3.1.2 Growth Mechanism 177
4.3.2 Synthesis of Cu Nanoparticles of Cubic and Multipod Shapes 179
4.4 Conclusions 179
References 181

5 Size- and Shape-Variant Magnetic Metal and Metal Oxide Nanoparticles: Synthesis and Properties 183
Kristen Stojak, Hariharan Srikanth, Pritish Mukherjee, Manh-Huong Phan, and Nguyen T. K. Thanh
5.1 Introduction 183
5.2 Synthesis of Size- and Shape-Variant Ferrite Nanoparticles 184
5.2.1 Thermal Decomposition 184
5.2.1.1 Surface Functionalization 185
5.2.1.2 Size and Shape Variance 187
5.2.2 Chemical Coprecipitation 189
5.2.3 Solvothermal Technique 191
5.2.4 Microemulsion Technique 192
5.3 Other Magnetic Nanoparticles: Synthesis, Size Variance, and Shape Variance 194
5.4 Magnetism in Ferrite Nanoparticles 196
5.4.1 Crystal Structure and Spin Configuration 196
5.4.2 Critical Size and Superparamagnetism 197
5.4.3 Size-Dependent Magnetic Properties 198
5.4.3.1 Static Magnetic Properties 198
5.4.3.2 Dynamic Magnetic Properties 203
5.4.4 Shape-Dependent Magnetic Properties 205
5.5 Magnetic Nanoparticles for Biomedical Applications 207
5.5.1 Targeted Drug Delivery 207
5.5.2 Hyperthermia 208
5.5.3 MRI Contrast Enhancement 208
5.6 Concluding Remarks and Future Directions 210
References 212

6 Structural Aspects of Anisotropic Metal Nanoparticle Growth: Experiment and Theory 215
Tulio C.R. Rocha, Herbert Winnischofe, and Daniela Zanchet
6.1 Introduction 215
6.2 Atomic Packing on Metal NPs 217
6.3 Structural Aspects in the Anisotropic Growth: The Silver Halide Model 221
6.4 Experimental Requisites to Produce Anisotropic NPs 226
6.5 Concluding Remarks 234
References 235

7 Colloids, Nanocrystals, and Surface Nanostructures of Uniform Size and Shape: Modeling of Nucleation and Growth in Solution Synthesis 239
Vladimir Privman
7.1 Introduction 239
7.2 Burst Nucleation Model for Nanoparticle Growth 242
7.3 Colloid Synthesis by Fast Growth 247
7.4 Improved Models for Two-Stage Colloid Growth 251
7.5 Particle Shape Selection in Solution Synthesis 254
7.6 Applications for Control of Morphology in Surface Structure Formation 261
7.7 Summary 263
References 264
8 Modeling Nanomorphology in Noble Metal Particles: Thermodynamic Cartography 269
 Amanda S. Barnard
 8.1 Introduction 269
 8.2 Ab Initio Simulation of Small Gold Nanoclusters 271
 8.3 Ab Initio Simulation of Gold Nanoparticles 272
 8.4 Thermodynamic Cartography 276
 8.4.1 Size-Dependent Melting 281
 8.4.2 Mapping the Morphology of Nanogold 282
 8.5 Gold Nanorods and Dimensional Anisotropy 285
 8.5.1 Preferred Shape and Termination Geometry 286
 8.5.2 Aspect Ratio and Dependence on Temperature 289
 8.5.3 Twinning in Gold Nanorods 291
 8.6 Comparison with Platinum and Inclusion of Surface Defects 294
 8.7 Conclusions 298
 References 300

9 Platinum and Palladium Nanocrystals: Soft Chemistry Approach to Shape Control from Individual Particles to Their Self-Assembled Superlattices 305
 Christophe Petit, Caroline Salzemann, and Arnaud Demortiere
 9.1 Introduction 305
 9.2 Influence of the Chemical Environment on the NC Shape 306
 9.2.1 How the Capping Agents Tune the Shape and the Size of Metal NCs: A Comparison of Two-Liquid Synthesis Methods 306
 9.2.1.1 Effect of the Capping Agent on the Shape of Platinum NCs 308
 9.2.1.2 Effect of the Capping Agent on the Size of Platinum NCs 310
 9.2.1.3 Effect of the Capping Agent on the Size and Shape of Palladium NCs Made in Reverse Micelles 312
 9.2.2 Role of the Strength of the Capping Agent–Metal Bond 315
 9.2.3 Role of the Gas Dissolved in a Solvent 318
 9.3 Synthesis of Platinum Nanocubes 321
 9.4 Supercrystals Self-Assembled from Nonspherical NCs 323
 9.5 Conclusions 333
 References 335

10 Ordered and Nonordered Porous Superstructures from Metal Nanoparticles 339
 Anne-Kristin Herrmann, Nadja C. Bigall, Lehui Lu, and Alexander Eychmüller
 10.1 Introduction 339
 10.2 Metallic Porous Superstructures 341
 10.2.1 Ordered Porous Metallic Nanostructures 341
 10.2.1.1 Preparation 342
 10.2.1.2 Applications in Catalysis and as SERS Substrates 345
 10.2.2 Nonordered Porous Superstructures on Biotemplates 347
10.2.3 Freestanding Nonordered Porous Superstructures 351
10.3 Summary and Outlook 355
References 355

11 Localized Surface Plasmons of Multifaceted Metal Nanoparticles 361
Cecilia Noguez and Ana L. Gonzalez
11.1 Introduction 361
11.2 Light Absorption and Scattering by Metal NPs 363
11.2.1 Light Absorption Mechanisms 366
11.2.2 Surface Plasmon Resonances 367
11.2.3 Dielectric Function of Metal NPs 368
11.3 Spectral Representation Formalism 371
11.3.1 General Trends of SPRs of Metal NPs in Vacuum 373
11.3.2 General Trends of SPRs of Metal NPs in a Host Medium 374
11.4 Spherical and Spheroidal NPs 375
11.4.1 Nanospheres 375
11.4.2 Nanospheroids 378
11.4.3 Multishell NPs 379
11.5 Discrete Dipole Approximation 380
11.6 SPRs in Multifaceted Morphologies 383
11.6.1 Cubic Morphology 383
11.6.2 Decahedral Morphology 385
11.6.3 Elongated NPs with Complex Morphologies 388
11.7 Summary 390
References 391

12 Fluorophore-Metal Nanoparticle Interactions and Their Applications in Biosensing 395
Thomas A. Klar and Jochen Feldmann
12.1 Introduction 395
12.2 Fluorescence Decay Rates in the Vicinity of Metal Nanostructures 395
12.2.1 Physical Concept 395
12.2.2 Oligonucleotide Sensing 401
12.2.3 Protein Sensors 404
12.2.3.1 Unspecific Protein Sensors 405
12.2.3.2 Immunoassays 405
12.2.3.3 Aptamer-Based Sensing 407
12.2.4 Sensing Small Molecules (Haptens) 409
12.2.5 Ion Sensing 411
12.2.6 Fluorescence Enhancement Sensors 411
12.3 Shaping of Fluorescence Spectra by Metallic Nanostructures 412
12.4 Shaping of Extinction Spectra by Strong Coupling 417
12.4.1 Physical Concept 417
12.4.2 Biosensor Applications 419
12.5 Specific Issues on the Interaction of Fluorophores with Complex-Shaped Metallic Nanoparticles 419
12.5.1 Spectral Tunability 420
12.5.2 Encoding 421
References 422

13 Surface-Enhanced Raman Scattering Using Complex-Shaped Metal Nanostructures 429
Frank Jäckel and Jochen Feldmann
13.1 Introduction 429
13.2 Basics 430
13.2.1 Raman Scattering 430
13.2.2 Surface-Enhanced Raman Scattering 431
13.3 Modeling 435
13.4 SERS Substrate Preparation 437
13.5 Fundamental Studies 439
13.5.1 Morphology Dependence 439
13.5.2 SERS with Single Particles 441
13.5.3 Single-Molecule SERS 443
13.5.4 Enhancement Mechanism 444
13.6 Applications 447
13.7 Conclusions and Outlook 448
References 449

14 Photothermal Effect of Plasmonic Nanoparticles and Related Bioapplications 455
Alexander O. Govorov, Zhiyuan Fan, and Alexander B. Neiman
14.1 Introduction 455
14.2 Theory of the Photothermal Effect for Single Nanoparticles and for Nanoparticle Clusters 458
14.2.1 Plasmonic Model 459
14.2.2 Mie Theory for a Single Spherical Nanoparticle 460
14.2.3 Effective Medium Approaches for the Dielectric Function and for the Thermal Conductivity of a Nanoparticle Cluster 462
14.2.4 Optically Generated Temperature 462
14.2.5 Mie Theory for Nanoparticles and Clusters 463
14.2.5.1 Small Spherical Nanoparticles and Clusters 463
14.2.5.2 Large Clusters 464
14.3 Physical Examples and Applications 467
14.3.1 Melting of the Matrix 467
14.3.2 Heating from a Collection of Nanoparticles: Heat Accumulation Effect 468
14.4 Application to Biological Cells: Control of Voltage Cellular Dynamics with Photothermal Actuation 471
14.5 Summary 474
References 474
15 Metal Nanoparticles in Biomedical Applications 477
 Jun Hui Soh and Zhiqiang Gao
 15.1 Introduction 477
 15.2 Biosensing and Diagnostics 478
 15.2.1 Localized Surface Plasmon Resonance Detection 479
 15.2.2 Colorimetric Detection 482
 15.2.3 Surface-Enhanced Raman Scattering Detection 487
 15.2.4 Electrochemical and Electrical Detection 491
 15.2.5 Magnetic Resonance-Based Detection 495
 15.3 Therapeutic Applications 498
 15.3.1 Applications in Tissue Engineering 499
 15.3.2 Application in Drug Delivery 501
 15.3.3 Cancer Therapy 504
 15.4 Bioimaging 508
 15.5 Conclusions and Outlook 513
 References 515

16 Anisotropic Nanoparticles for Efficient Thermoelectric Devices 521
 Nguyen T. Mai, Derrick Mott, and Shinya Maenosono
 16.1 Introduction 521
 16.2 Chemical Synthesis Methods of Complex-Shaped TE NPs 523
 16.2.1 Thermal Decomposition Method 523
 16.2.2 Hydrothermal Method 523
 16.2.3 Solvent-Based Reduction Method 523
 16.2.4 Important Factors in the Synthesis Toward Complex-Shaped
 TE NPs 524
 16.3 One-Dimensional TE NPs 525
 16.3.1 Pb-(Te, Se) System 525
 16.3.2 (Bi, Sb)-(Te, Se) System 528
 16.4 Two-Dimensional TE NPs 531
 16.4.1 Pb-(Te, Se) System 531
 16.4.2 (Bi, Sb)-(Te, Se) System 531
 16.5 Other Complex-Shaped TE NPs 535
 16.6 Properties of Complex-Shaped TE NPs 538
 16.7 Conclusions and Future Outlook 540
 References 541

Index 545