Contents

Design Examples and Perspectives
 Preface
 Preface to the First Edition

Section 1 Highway Bridges

1.1 USE AND FUNCTIONALITY
1.1.1 Terminology and Nomenclature
1. Superstructure
2. Substructure
3. Appurtenances and Site-Related Features
4. Miscellaneous Terms
1.1.2 Structure Types and Applications
1. Slab-on-Girder
2. One-Way Slab
3. Steel and Concrete Box Girder
4. Cable-Stayed
5. Suspension
6. Steel and Concrete Arch
7. Truss

1.2 ORIGINS OF THE MODERN HIGHWAY BRIDGE

1.3 BRIDGE DESIGNERS AND THEIR PROJECTS

1.4 THE BRIDGE ENGINEERING LEXICON

Section 2 Project Inception

2.1 PROJECT FUNDING
2.1.1 User Fees
2.1.2 Nonuser Fees
2.1.3 Special Benefit Fees
2.1.4 Private Financing
2.1.5 Debt Financing
2.1.6 Conclusions

References
2.2 TYPES OF DESIGN STANDARDS
2.2.1 General Specifications - 45
2.2.2 Material-Related Design Codes - 46
1. Steel - 46
2. Concrete - 46
3. Timber - 47
2.2.3 Use of Design Standards - 47

2.3 SITE INSPECTION
2.3.1 The Qualifications of Inspectors - 49
2.3.2 The Design Inspection - 50
2.3.3 Recording the Inspection - 50
2.3.4 Rating Substructure Elements - 51
1. Joints - 52
2. Bearings, Bridge Seats, and Pedestals - 53
3. Concrete Elements - 54
4. Steel Elements - 55
5. Timber Elements - 55
6. Embankment - 56
2.3.5 Rating Superstructure Elements - 56
1. Deck and Wearing Surface - 56
2. Primary and Secondary Members - 58
2.3.6 Rating Appurtenance and Site-Related Elements - 59
1. Railing - 59
2. Drainage Systems - 59
3. Utilities - 60
4. Lighting and Signing - 60
2.3.7 Inspecting for Scour - 61
1. The Channel - 61
2. The Substructure - 62
2.3.8 Conclusions - 63

2.4 SITE SURVEY
2.4.1 Topography - 64
2.4.2 Planimetry - 65
2.4.3 Structure Features - 66

2.5 PHYSICAL TESTING
2.5.1 Coring - 67
2.5.2 Delamination Testing - 67
2.5.3 Testing for Cover - 67
2.5.4 Measuring Steel Thickness - 68
2.5.5 Detecting Fatigue Cracks - 68

2.6 THE INSPECTION TEAM
2.7 AS-BUILT PLANS AND OTHER RECORD DATA

2.7.1 Supplementing As-Built Plans - 71
1. Guard Railing - 71
2. Drainage Facilities - 71
3. Traffic Barriers - 71
4. Miscellaneous Elements - 71

2.7.2 Other Sources - 72

2.8 CONCLUSIONS

References - 73

Section 3 The Superstructure

3.1 SUPERSTRUCTURE TYPES

3.1.1 Steel Superstructures - 78
1. Rolled Beam - 78
2. Rolled Beam with Cover Plate - 78
3. Plate Girder - 78
4. Box Girder - 79
5. Steel Rigid Strut Frame - 80
6. Large Structures - 80

3.1.2 Concrete Superstructures - 80
1. Prestressed Concrete Girder - 80
2. Concrete Box Girder - 82
3. Concrete Slab - 83
4. Adjacent Prestressed Slab - 83
5. Concrete Rigid Frame - 84
6. Concrete Strut Frame - 84
7. Concrete Arch - 84

3.1.3 Timber Superstructures - 84
1. Glulam Timber - 84
2. Stress-Laminated Timber Deck - 84
3. Trestle - 85
4. Truss - 85

3.1.4 Secondary Members - 85
1. Diaphragms - 86
2. Lateral Bracing - 88
3. Portal and Sway Bracing - 89

3.2 DECK TYPES

3.2.1 Noncomposite and Composite Decks - 89
3.2.2 Cast-in-Place Concrete Slab - 90
3.2.3 Precast, Prestressed Concrete Panels - 90
3.2.4 Steel Orthotropic Plate - 90
3.2.5 Steel Grid - 91
3.2.6 Timber - 91
3.2.7 Corrugated Metal - 92
3.2.8 Fiber Reinforced Polymer (FRP) - 92

3.3 WEARING SURFACE TYPES
3.3.1 Asphalt Concrete - 92
3.3.2 Polymer Modified Concrete - 92
3.3.3 High-Performance Concrete - 93
3.3.4 Integrated Wearing Surface - 93

3.4 DECK JOINT TYPES
3.4.1 Open and Sealed Joints - 94
3.4.2 Filled Joints - 94
3.4.3 Compression Seal Joints - 94
3.4.4 Strip Seal Joints - 95
3.4.5 Modular Joints - 96
3.4.6 Finger Plate Joints - 97
3.4.7 Sliding Plate Joints - 98
3.4.8 Conclusions - 99

3.5 DESIGN LOADS
3.5.1 Background and History - 100
3.5.2 Permanent Loads - 100
 1. Dead Load - 100
 2. Superimposed Dead Load - 101
 3. Pressures - 101
3.5.3 Temporary Loads - 101
 1. Vehicle Live Load - 101
 2. Pedestrian Load - 105
 3. Earthquake Loading - 105
 4. Wind Loading - 111
 5. Channel Forces - 113
 6. Braking Force - 115
 7. Centrifugal Forces - 115
 8. Dynamic Load Allowance - 116
 9. Construction Loads - 116
3.5.4 Deformation and Response Loads - 116
 1. Shrinkage - 117
 2. Creep - 117
 3. Settlement - 118
 4. Uplift - 118
 5. Thermal Movement - 119
3.5.5 Group Loading Combinations - 120
 1. AASHTO Standard Specifications - 120
 2. AASHTO LRFD Specifications - 120

3.6 DESIGN METHODS
3.6.1 Working Stress Design - 124
3.6.2 Limit States Design - 126
3.6.3 Background and History - 127
3.10.3 Effective Flange Width - 165
3.10.4 The Transformed Section - 167
3.10.5 Effects of Creep - 168
3.10.6 Choosing a Girder Section - 168
1. Compute Design Moments and Shear Forces - 168
2. Total Factored Moment and Shear Forces - 172
3. Choosing a Section - 172
4. Composite Section in Positive Flexure - 172
5. Composite Section in Negative Flexure and Noncomposite Sections - 178
6. Shear Resistance of I-Sections - 183
7. Web Bending-Buckling - 185
8. Conclusions - 187
3.10.7 Shear Connector Design - 188
1. Fatigue - 188
2. Additional Geometric Constraints - 192
3. Effect of Stay-in-Place Forms - 192
4. Strength Limit State - 194
3.10.8 Bridge Fatigue - 200
1. Linear-Elastic Fracture Mechanics - 200
2. Stress-Life Method - 202
3. AASHTO Method - 203
4. Fatigue-Prone Details - 209
3.10.9 Deflections - 210
3.10.10 Camber - 212

3.11 PLATE GIRDER DESIGN

3.11.1 Hybrid Girders - 215
3.11.2 Elements of a Plate Girder - 215
1. Flange Plate Thickness - 215
2. Flange Plate Economy - 216
3. Web Thickness - 216
4. Web Plate Economy - 217
5. Transverse Intermediate Stiffeners - 217
6. Transverse Intermediate Stiffener Economy - 222
7. Bearing Stiffeners - 222
8. Longitudinal Stiffeners - 223
9. Longitudinal Stiffener Economy - 225
10. Miscellaneous Economy Issues - 226
3.11.3 Lateral Bracing for Plate Girders - 227
1. Where Bracing Is Located - 227
2. Bracing as a Function of Span Length - 227
3. Placement and Types of Lateral Bracing - 227
4. Eliminating Lateral Bracing - 228
5. Economy of Lateral Bracing - 229
3.11.4 Cross-Frames for Plate Girders - 229

3.12 CONTINUOUS BEAMS
3.12.1 Advantages of Continuous Beams - 230
3.12.2 Rolled Sections as Continuous Beams - 231
3.12.3 Moment Distribution - 232
1. Overview - 232
2. Fixed-End Moments - 232
3. Relative Beam Stiffness - 233
4. Fixity Factor - 233
5. Stiffness Factor - 233
6. Distribution Factor - 234
7. Carryover Factor - 234
8. Method Synopsis - 234
3.12.4 Influence Lines - 234
1. General Moment Support Equation - 239
2. Unit Loads - 240
3. Influence Data at Intermediate Points - 241
4. Predefined Tables - 242
5. Using Influence Lines - 242
6. Area under an Influence Line - 247
7. Conclusions - 250
3.12.5 Alternate Method for Analysis of Continuous Beams - 252
3.12.6 Live Load on Continuous Beam Structures - 256
1. Computing Moment Using Influence Lines - 257
2. Special Load Points - 260
3. Shear Force - 262
3.12.7 Composite Section in Negative Bending - 262
3.12.8 Girder Splices - 263
1. Required Strength - 264
2. Welded Splices - 264
3. Bolted Splices - 265
4. Bolted Web Splices - 268
5. Bolted Flange Splices - 270
3.12.9 Pin and Hanger Assemblies - 272

3.13 PROTECTING STEEL SUPERSTRUCTURES
3.13.1 Protective Coating Systems - 275
1. Background and History - 275
2. The Nature of Steel Corrosion - 276
3. Inhibitive Primers - 278
4. Sacrificial Primers - 280
5. Barrier Coatings - 280
6. Coating Applications - 281
7. Surface Preparation - 282
8. Overcoating - 288
9. Micaceous Iron Oxide (MIO) Coatings - 288
10. Conclusions - 290
3.15.3 Required Prestress Force - 334
3.15.4 Loss of Prestress - 339
 1. Elastic Shortening - 340
 2. Friction - 341
 3. Anchorage Set - 344
 4. Time-Dependent Losses - 344
 5. Total Loss - 347
3.15.5 Allowable Stresses - 348
3.15.6 Flexural Strength - 349

3.16 PRESTRESSED CONCRETE MAINTENANCE - 352
3.16.1 Overview - 353
3.16.2 Deterioration of Prestressed Concrete - 354
 1. Cracking - 356
 2. Other Forms of Concrete Problems - 356
 3. Deterioration of Prestressing Steel - 357
3.16.3 Inspection of Prestressed Concrete - 359
3.16.4 Rehabilitation of Prestressed Concrete - 360
 1. Patching - 362
 2. Permanent Formwork - 363
 3. Crack Injection - 363
 4. Sealers - 364
 5. Strengthening - 365
 6. Conclusions - 366

REFERENCES - 366

Section 4 The Substructure - 373
4.1 ABUTMENTS - 374
4.1.1 Types of Abutments - 375
 1. Gravity Abutment - 375
 2. Cantilever Abutment - 375
 3. Full-Height Abutment - 376
 4. Stub Abutment - 376
 5. Semistub Abutment - 376
 6. U Abutment - 376
 7. Counterfort Abutment - 376
 8. Spill-through Abutment - 377
 9. Pile Bent Abutment - 377
 10. MSE Systems - 378
4.1.2 Coulomb Earth Pressure Theory - 379
4.1.3 Abutment Foundation Design - 384
 1. Loading - 386
 2. Spread Footings - 387
 3. Foundations on Piles - 390
 4. Foundations on Drilled Shafts - 392
4.1.4 Abutment Stem - 394
4.1.5 Wingwalls - 394
4.1.6 Other Related Foundation Topics - 396
4.1.7 Mononobe-Okabe Analysis - 396
 1. Background - 397
 2. Horizontal and Vertical Seismic Coefficients - 398
 3. Basic Assumption - 400
 4. Active Earth Pressure - 400
 5. Applying Active Earth Pressure - 402
 6. Caveats - 403
 7. Superstructure Loads - 404
4.1.8 Rehabilitation and Maintenance - 404
 1. Cracking - 405
 2. Surface Deterioration - 406
 4. Bridge Seat Deterioration - 408
 5. Sheet Piling Abutments - 410
 6. Stone Masonry Abutments - 410
 7. MSE Systems - 411
 8. Footings - 412
 9. Piles - 412

4.2 PIERS 414
4.2.1 Types of Piers - 415
 1. Hammerhead - 416
 2. Column Bent - 417
 3. Pile Bent - 417
 4. Solid Wall - 418
 5. Integral - 419
 6. Single Column - 419
4.2.2 Behavior and Loading of Piers - 419
4.2.3 Design Criteria - 420
4.2.4 Design of Compression Members - 422
 1. Design Considerations - 423
 2. Slenderness Effects - 424
 3. Interaction Diagrams - 430
 4. Limits of Reinforcement - 432
4.2.5 Rehabilitation and Maintenance - 434
4.2.6 Scour - 436
 1. Overview - 436
 2. Rehabilitation and Maintenance - 438
 3. Replacement of Material - 439
 4. Changing the Structure - 440
 5. Replacing the Structure - 440

4.3 BEARINGS 441
4.3.1 Forces Acting on a Bearing - 442
4.3.2 Movement of Bearings - 443
CONTENTS

4.3.3 Types of Bearings - 444
 1. Rocker Bearings - 445
 2. Roller Bearings - 445
 3. Sliding Plate Bearings - 446
 4. Pot Bearings - 446
 5. Spherical Bearings - 447
 6. Elastomeric Bearings - 447
 7. Lead Rubber Bearings - 449
4.3.4 Rehabilitation and Maintenance - 449

REFERENCES - 451

Section 5 Implementation and Management - 453

5.1 THE HIGHWAY - 454
 5.1.1 Design Elements of a Highway - 454
 1. Horizontal Alignment - 455
 2. Vertical Alignment - 457
 3. Stopping Sight Distance - 459
 4. Roadway Width - 464
 5.1.2 Maintenance of Traffic - 465

5.2 CONTRACT DOCUMENTS - 467
 5.2.1 Design Submissions - 468
 1. Alternative Study - 468
 2. Preliminary Submission - 469
 3. Advanced Detail Submission - 470
 4. Final Submission - 471
 5.2.2 Computer-Aided Design and Drafting - 471
 1. File Organization - 472
 2. Geometric Source Files - 473
 3. The Forgotten D in CADD - 474
 4. Graphic Standards and Quality Control - 475
 5.2.3 Conclusions - 476

5.3 BRIDGE MANAGEMENT SYSTEMS - 477
 5.3.1 Background and History - 478
 5.3.2 Inventory Database - 479
 5.3.3 Maintenance Database - 479
 5.3.4 Project and Network Level Analysis - 480
 5.3.5 Predicting the Condition of Bridges - 481
 5.3.6 Miscellaneous Decision-Assisting Criteria - 481
 5.3.7 Costing Models - 482
 5.3.8 Optimization Models - 482
 5.3.9 Building the Database - 483
5.3.10 Managing Small and Large Structures - 484
5.3.11 Current Bridge Management Systems - 485
5.3.12 BMS Link to Design of Bridges - 485
5.3.13 BMS Link to Pavement Management Systems - 487
5.3.14 GIS and Imaging Technologies - 488

REFERENCES

Appendix 491
Acknowledgments 493
Illustration Credits 495
Index 497