Contents

Preface XI
List of Contributors XIII

1 Amperometric Biosensors 1
Sabine Borgmann, Albert Schulte, Sebastian Neugebauer, and Wolfgang Schuhmann
1.1 Introduction 1
1.1.1 Definition of the Term “Biosensor” 3
1.1.2 Milestones and Achievements Relevant to Biosensor Research and Development 7
1.1.3 “First-Generation” Biosensors 7
1.1.4 “Second-Generation” Biosensors 7
1.1.5 “Third-Generation” Biosensors 13
1.1.6 Reagentless Biosensor Architectures 15
1.1.7 Parameters with a Major Impact on Overall Biosensor Response 18
1.1.8 Application Areas of Biosensors 22
1.2 Criteria for “Good” Biosensor Research 23
1.3 Defining a Standard for Characterizing Biosensor Performances 25
1.4 Success Stories in Biosensor Research 28
1.4.1 Direct ET Employed for Biosensors and Biofuel Cells 29
1.4.2 Direct ET with Glucose Oxidase 32
1.4.3 Mediated ET Employed for Biosensors and Biofuel Cells 36
1.4.4 Nanomaterials and Biosensors 38
1.4.4.1 Modification of Macroscopic Transducers with Nanomaterials 39
1.4.4.2 Nanometric Transducers 41
1.4.4.3 Modification of Biomolecules with Nanomaterials 42
1.4.5 Implanted Biosensors for Medical Research and Health Check Applications 42
1.4.6 Nucleic Acid-Based Biosensors: Nucleic Acid Chips, Arrays, and Microarrays 48
1.4.7 Immunosensors 52
1.4.7.1 Labeled Approaches 53
1.4.7.2 Nonlabeled Approaches 54
2 Imaging of Single Biomolecules by Scanning Tunneling Microscopy 85

Jingdong Zhang, Qijin Chi, Palle Skovhus Jensen, and Jens Ulstrup

2.1 Introduction 85

2.2 Interfacial Electron Transfer in Molecular and Protein Film Voltammetry 87

2.2.1 Theoretical Notions of Interfacial Chemical and Bioelectrochemical Electron Transfer 88

2.2.2 Nuclear Reorganization Free Energy 90

2.2.3 Electronic Tunneling Factor in Long-Range Interfacial (Bio)electrochemical Electron Transfer 90

2.3 Theoretical Notions in Bioelectrochemistry towards the Single-Molecule Level 92

2.3.1 Biomolecules in Nanoscale Electrochemical Environment 92

2.3.2 Theoretical Frameworks and Interfacial Electron Transfer Phenomena 92

2.3.2.1 Redox (Bio)molecules in Electrochemical STM and Other Nanogap Configurations 93

2.3.2.2 New Interfacial (Bio)electrochemical Electron Transfer Phenomena 95

2.4 In Situ Imaging of Bio-related Molecules and Linker Molecules for Protein Voltammetry with Single-Molecule and Sub-molecular Resolution 97

2.4.1 Imaging of Nucleobases and Electronic Conductivity of Short Oligonucleotides 97

2.4.2 Functionalized Alkanethiols and the Amino Acids Cysteine and Homocysteine 98

2.4.2.1 Functionalized Alkanethiols as Linkers in Metalloprotein Film Voltammetry 100

2.4.2.2 In Situ STM of Cysteine and Homocysteine 102

2.4.2.3 Theoretical Computations and STM Image Simulations 104

2.4.3 Single-Molecule Imaging of Bio-related Small Redox Molecules 105

2.5 Imaging of Intermediate-Size Biological Structures: Lipid Membranes and Insulin 107

2.5.1 Biomimetic Mono- and Bilayer Membranes on Au(111) Electrode Surfaces 107

2.5.2 Monolayers of Human Insulin on Different Low-Index Au Electrode Surfaces Mapped to Single-Molecule Resolution by In Situ STM 109

2.6 Interfacial Electrochemistry and In Situ Imaging of Redox Metalloproteins and Metalloenzymes at the Single-Molecule Level 112

2.6.1 Metalloprotein Voltammetry at Bare and Modified Electrodes 112
2.6.2 Single-Molecule Imaging of Functional Electron Transfer
Metalloproteins by In Situ STM 112

2.6.2.1 Small Redox Metalloproteins: Blue Copper, Heme, and
Iron–Sulfur Proteins 114

2.6.2.2 Single-Molecule Tunneling Spectroscopy of Wild-Type and Cys Mutant
Cytochrome b_{562} 114

2.6.2.3 Cytochrome c_{6}: A Prototype for Microscopic Electronic Mapping of
Multicenter Redox Metalloproteins 116

2.6.2.4 Redox Metalloenzymes in Electrocatalytic Action Imaged at the
Single-Molecule Level: Multicopper and Multiheme Nitrite
Reductases 119

2.6.2.5 Au–Nanoparticle Hybrids of Horse Heart Cytochrome c and
P. aeruginosa Azurin 120

2.7 Some Concluding Observations and Outlooks 123

Acknowledgments 126
References 126

3 Applications of Neutron Reflectivity in Bioelectrochemistry 143
Ian J. Burgess

3.1 Introduction 143

3.2 Theoretical Aspects of Neutron Scattering 144

3.2.1 Why Use Neutrons? 144
3.2.2 Scattering from a Single Nucleus 145

3.2.2.1 The Fermi Pseudo Potential 147
3.2.3 Scattering from a Collection of Nuclei 147

3.2.3.1 Neutron Scattering Cross Sections 147
3.2.3.2 Coherent and Incoherent Scattering 148
3.2.4 Theoretical Expressions for Specular Reflectivity 149

3.2.4.1 The Continuum Limit 149
3.2.4.2 The Kinematic Approach 151

3.3 Experimental Aspects 154

3.3.1 Experimental Aspects of Reflectometer Operation 154
3.3.2 Substrate Preparation and Characterization 157
3.3.3 Cell Design and Assembly 160
3.3.4 Data Acquisition and Analysis 162

3.4 Selected Examples 168

3.4.1 Supported Proteins, Peptides, and Membranes without
Potential Control 168

3.4.1.1 Quartz- and Silicon-Supported Bilayers 168
3.4.1.2 Hybrid Bilayers on Solid Supports 170
3.4.1.3 Protein Adsorption and DNA Monolayers 173
3.4.2 Electric Field-Driven Transformations in Supported
Model Membranes 175

3.5 Summary and Future Aspects 182
Acknowledgments 184
References 185

4 Model Lipid Bilayers at Electrode Surfaces 189
Rolando Guidelli and Lucia Becucci
4.1 Introduction 189
4.2 Biomimetic Membranes: Scope and Requirements 189
4.3 Electrochemical Impedance Spectroscopy 192
4.4 Formation of Lipid Films in Biomimetic Membranes 194
4.4.1 Vesicle Fusion 196
4.4.2 Langmuir–Blodgett and Langmuir–Schaefer Transfer 198
4.4.3 Rapid Solvent Exchange 200
4.4.4 Fluidity in Biomimetic Membranes 201
4.5 Various Types of Biomimetic Membranes 201
4.5.1 Solid-Supported Bilayer Lipid Membranes 201
4.5.2 Tethered Bilayer Lipid Membranes 203
4.5.2.1 Spacer-Based tBLMs 204
4.5.2.2 Thiolipid-Based tBLMs 205
4.5.2.3 Thiolipid–Spacer-Based tBLMs 215
4.5.3 Polymer-Cushioned Bilayer Lipid Membranes 216
4.5.4 S-Layer Stabilized Bilayer Lipid Membranes 218
4.5.5 Protein-Tethered Bilayer Lipid Membranes 220
4.6 Conclusions 222
Acknowledgments 223
References 223

5 Enzymatic Fuel Cells 229
Paul Kavanagh and Dónal Leech
5.1 Introduction 229
5.1.1 Enzymatic Fuel Cell Design 231
5.1.2 Enzyme Electron Transfer 231
5.2 Bioanodes for Glucose Oxidation 235
5.3 Biocathodes 243
5.4 Assembled Biofuel Cells 255
5.5 Conclusions and Future Outlook 259
Acknowledgments 261
References 262

6 Raman Spectroscopy of Biomolecules at Electrode Surfaces 269
Philip Bartlett and Sumeet Mahajan
6.1 Introduction 269
6.2 Raman Spectroscopy 270
6.3 SERS and Surface-Enhanced Resonant Raman Spectroscopy 272
6.4 Comparison of SE(R)RS and Fluorescence for Biological Studies 276
6.5 Surfaces for SERS 278
6.6 Plasmonic Surfaces 280
6.7 SERS Surfaces for Electrochemistry 281
6.8 Tip-Enhanced Raman Spectroscopy 291
6.9 SE(R)RS of Biomolecules 292
6.9.1 DNA Bases, Nucleotides, and Their Derivatives 292
6.9.2 DNA and Nucleic Acids 296
6.9.3 Amino Acids and Peptides 299
6.9.4 Proteins and Enzymes 303
6.9.4.1 Redox Proteins 303
6.9.4.2 Other Proteins 307
6.9.4.3 Enzymes 308
6.9.5 Membranes, Lipids, and Fatty Acids 310
6.9.6 Metabolites and Other Small Molecules 311
6.9.6.1 Neurotransmitters 311
6.9.6.2 Nicotinamide Adenine Dinucleotide 312
6.9.6.3 Flavin Adenine Dinucleotide 313
6.9.6.4 Bilirubin 325
6.9.6.5 Glucose 325
6.10 Conclusion 325
References 326

7 Membrane Electroporation in High Electric Fields 335
Rumiana Dimova
7.1 Introduction 335
7.1.1 Giant Vesicles as Model Membrane Systems 335
7.1.2 Mechanical and Rheological Properties of Lipid Bilayers 337
7.2 Electrodeformation and Electroporation of Membranes in the Fluid Phase 338
7.3 Response of Gel-Phase Membranes 342
7.4 Effects of Membrane Inclusions and Media on the Response and Stability of Fluid Vesicles in Electric Fields 345
7.4.1 Vesicles in Salt Solutions 345
7.4.2 Vesicles with Cholesterol-Doped Membranes 347
7.4.3 Membranes with Charged Lipids 349
7.5 Application of Vesicle Electroporation 350
7.5.1 Measuring Membrane Edge Tension from Vesicle Electroporation 350
7.5.2 Vesicle Electrofusion 353
7.5.2.1 Fusing Vesicles with Identical or Different Membrane Composition 353
7.5.2.2 Vesicle Electrofusion: Employing Vesicles as Microreactors 355
7.6 Conclusions and Outlook 357
Acknowledgments 358
References 358
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Electroporation for Medical Use in Drug and Gene Electrotransfer</td>
<td>369</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>369</td>
</tr>
<tr>
<td>8.2 A List of Definitions</td>
<td>370</td>
</tr>
<tr>
<td>8.3 How We Understand Permeabilization at the Cellular and Tissue Level</td>
<td>371</td>
</tr>
<tr>
<td>8.4 Basic Aspects of Electroporation that are of Particular Importance for Medical Use</td>
<td>374</td>
</tr>
<tr>
<td>8.4.1 Delivery of Drugs</td>
<td>374</td>
</tr>
<tr>
<td>8.4.2 Delivery of DNA</td>
<td>375</td>
</tr>
<tr>
<td>8.4.3 Delivery of Other Molecules</td>
<td>376</td>
</tr>
<tr>
<td>8.4.4 Delivery of Electric Pulses</td>
<td>376</td>
</tr>
<tr>
<td>8.4.5 End of the Permeabilized State</td>
<td>376</td>
</tr>
<tr>
<td>8.4.6 The Vascular Lock</td>
<td>377</td>
</tr>
<tr>
<td>8.5 How to Deliver Electric Pulses in Patient Treatment</td>
<td>377</td>
</tr>
<tr>
<td>8.5.1 Pulse Generators and Electrodes</td>
<td>377</td>
</tr>
<tr>
<td>8.5.2 Anesthesia</td>
<td>377</td>
</tr>
<tr>
<td>8.6 Treatment and Post-treatment Management</td>
<td>378</td>
</tr>
<tr>
<td>8.7 Clinical Results with Electrochemotherapy</td>
<td>378</td>
</tr>
<tr>
<td>8.7.1 Tumors Up to Three Centimeters in Size</td>
<td>378</td>
</tr>
<tr>
<td>8.7.2 Larger Tumors</td>
<td>380</td>
</tr>
<tr>
<td>8.8 Use in Internal Organs</td>
<td>380</td>
</tr>
<tr>
<td>8.8.1 Endoscopic Use</td>
<td>381</td>
</tr>
<tr>
<td>8.8.2 Bone Metastases</td>
<td>381</td>
</tr>
<tr>
<td>8.8.3 Brain Metastases, Brain Tumors, and Other Tumors in Soft Tissues</td>
<td>381</td>
</tr>
<tr>
<td>8.8.4 Liver Metastases</td>
<td>381</td>
</tr>
<tr>
<td>8.9 Gene Electrotransfer</td>
<td>381</td>
</tr>
<tr>
<td>8.9.1 Gene Electrotransfer to Muscle</td>
<td>383</td>
</tr>
<tr>
<td>8.9.2 Gene Electrotransfer to Skin</td>
<td>383</td>
</tr>
<tr>
<td>8.9.3 Gene Electrotransfer to Tumors</td>
<td>384</td>
</tr>
<tr>
<td>8.9.4 Gene Electrotransfer to Other Tissues</td>
<td>385</td>
</tr>
<tr>
<td>8.10 Conclusions</td>
<td>386</td>
</tr>
</tbody>
</table>

Index 389