Handbook of Plant Food Phytochemicals

Sources, Stability and Extraction

Edited by

B.K. Tiwari
Food and Consumer Technology Department
Hollings Faculty
Manchester Metropolitan University
Old Hall Lane
Manchester
UK

Nigel P. Brunton
School of Agriculture and Food Science
University College Dublin
Dublin
Ireland

Charles S. Brennan
Faculty of Agriculture and Life Sciences
Lincoln University
Lincoln
Canterbury
New Zealand
# Contents

*Contributor list*  
xiii  

1 **Plant food phytochemicals**  
   B.K. Tiwari, Nigel P. Brunton and Charles S. Brennan  
   1.1 Importance of phytochemicals  
   1.2 Book objective  
   1.3 Book structure  

**PART I CHEMISTRY AND HEALTH**  

2 **Chemistry and classification of phytochemicals**  
   Rocio Campos-Vega and B. Dave Oomah  
   2.1 Introduction  
   2.2 Classification of phytochemicals  
   2.2.1 Terpenes  
   2.2.2 Polyphenols  
   2.2.3 Carotenoids  
   2.2.4 Glucosinolates  
   2.2.5 Dietary fiber (non starch polysaccharides)  
   2.2.6 Lectins  
   2.2.7 Other phytochemicals  
   2.3 Chemical properties of phytochemicals  
   2.3.1 Terpenes  
   2.3.2 Polyphenols  
   2.3.3 Carotenoids  
   2.3.4 Glucosinolates  
   2.3.5 Dietary fiber (non starch polysaccharides)  
   2.3.6 Lectins  
   2.3.7 Other phytochemicals  
   2.4 Biochemical pathways of important phytochemicals  
   2.4.1 Shikimate pathway  
   2.4.2 Isoprenoid pathway  
   2.4.3 Polyketide pathway  
   2.4.4 Secondary transformation  
   2.4.5 Glucosinolate biosynthesis  

**References**  

3 **Phytochemicals and health**  
   Ian T. Johnson  
   3.1 Introduction  


### Contents

#### 3.2 Bioavailability of phytochemicals
- 3.2.1 Terpenes
- 3.2.2 Polyphenols
- 3.2.3 Carotenoids
- 3.2.4 Glucosinolates
- 3.2.5 Lectins

#### 3.3 Phytochemicals and their health-promoting effects
- 3.3.1 Phytochemicals as antioxidants
- 3.3.2 Blocking and suppressing the growth of tumours
- 3.3.3 Modifying cardiovascular physiology

#### 3.4 General conclusions

References

#### 4 Pharmacology of phytochemicals

José M. Matés

- 4.1 Introduction
- 4.2 Medicinal properties of phytochemicals
  - 4.2.1 Therapeutic use of antioxidants
  - 4.2.2 Phytochemicals as therapeutic agents
- 4.3 Phytochemicals and disease prevention
  - 4.3.1 Pharmacologic effects of phytochemicals
- 4.4 Phytochemicals and cardiovascular disease
- 4.5 Phytochemicals and cancer
- 4.6 Summary and conclusions

References

#### PART II SOURCES OF PHYTOCHEMICALS

#### 5 Fruit and vegetables

Uma Tiwari and Enda Cummins

- 5.1 Introduction
- 5.2 Polyphenols
- 5.3 Carotenoids
- 5.4 Glucosinolates
  - 5.4.1 Variations in glucosinolates
- 5.5 Glycoalkaloids
- 5.6 Polyacetylenes
- 5.7 Sesquiterpene lactones
- 5.8 Coumarins
- 5.9 Terpenoids
- 5.10 Betalains
- 5.11 Vitamin E or tocols content in fruit and vegetables
- 5.12 Conclusions

References

#### 6 Food grains

Sanaa Ragae, Tamer Gamel, Koushik Seethraman, and El-Sayed M. Abdel-Aal

- 6.1 Introduction

References
6.2 Phytochemicals in cereal grains

6.2.1 Dietary fiber 139
6.2.2 Phenolic compounds 141
6.2.3 Other phytochemicals 143

6.3 Phytochemicals in legume grains

6.3.1 Dietary fiber 144
6.3.2 Phenolic acids 145
6.3.3 Isoflavones 146
6.3.4 Saponins 146
6.3.5 Anthocyanins 147
6.3.6 Lignans 148
6.3.7 Other phytochemicals 148

6.4 Stability of phytochemicals during processing 149

6.5 Food applications and impact on health 152

6.6 Cereal-based functional foods 152

6.7 Legume-based functional foods 153

References 154

7 Plantation crops and tree nuts: composition, phytochemicals and health benefits 163

Narpinder Singh and Amritpal Kaur

7.1 Introduction 163

7.2 Composition 165

7.3 Phytochemicals content 167

7.4 Health benefits 174

References 175

8 Food processing by-products 180

Anil Kumar Anal

8.1 Introduction 180

8.2 Phytochemicals from food by-products 181
8.2.1 Biowaste from tropical fruit and vegetables 181
8.2.2 Citrus peels and seeds 181
8.2.3 Mango peels and kernels 182
8.2.4 Passion fruit seed and rind 183
8.2.5 Pomegranate peels, rinds and seeds 184
8.2.6 Mangosteen rind and seeds 184

8.3 By-products from fruit and vegetables 187
8.3.1 Apple pomace 187
8.3.2 By-products from grapes 187
8.3.3 Banana peels 188
8.3.4 Tomato 188
8.3.5 Carrot 188
8.3.6 Mulberry leaves 189

8.4 Tuber crops and cereals 189
8.4.1 Cassava 189
8.4.2 Defatted rice bran 189

8.5 Extraction of bioactive compounds from plant food by-products 190
8.6 Future trends
References

PART III IMPACT OF PROCESSING ON PHYTOCHEMICALS

9 On farm and fresh produce management
Kim Reilly

9.1 Introduction
9.2 Pre-harvest factors affecting phytochemical content
  9.2.1 Tissue type and developmental stage
  9.2.2 Fertilizer application – nitrogen, phosphorus, potassium, sulphur and selenium
  9.2.3 Seasonal and environmental effects – light and temperature
  9.2.4 Biotic and abiotic stress
  9.2.5 Means of production – organic and conventional agriculture
  9.2.6 Other factors
9.3 Harvest and post-harvest management practices
  9.3.1 Harvest and post-harvest management of onion
  9.3.2 Harvest and post-harvest management of broccoli
  9.3.3 Harvest and post-harvest management of carrot
9.4 Future prospects
  9.4.1 Growing bio-fortified crops – optimized agronomic and post-harvest practices
  9.4.2 Edible sprouts
  9.4.3 Variety screening and plant breeding for bio-fortified crops
  9.4.4 Novel uses for crops and crop wastes
References

10 Minimal processing of leafy vegetables
Rod Jones and Bruce Tomkins

10.1 Introduction
10.2 Minimally processed products
10.3 Cutting and shredding
10.4 Wounding physiology
10.5 Browning in lettuce leaves
10.6 Refrigerated storage
10.7 Modified atmosphere storage
10.8 Conclusions
References

11 Thermal processing
Nigel P. Brunton

11.1 Introduction
11.2 Blanching
11.3 Sous vide processing
11.4 Pasteurisation
12 Effect of novel thermal processing on phytochemicals

Bhupinder Kaur, Fazilah Ariffin, Rajeev Bhat, and Alias A. Karim

12.1 Introduction
12.2 An overview of different processing methods for fruits and vegetables
12.3 Novel thermal processing methods
12.4 Effect of novel processing methods on phytochemicals
   12.4.1 Ohmic heating
   12.4.2 Microwave heating
   12.4.3 Radio frequency
12.5 Challenges and prospects/future outlook
12.6 Conclusion
References

13 Non thermal processing

B.K. Tiwari, PJ Cullen, Charles S. Brennan and Colm P. O'Donnell

13.1 Introduction
13.2 Irradiation
   13.2.1 Ionising radiation
   13.2.2 Non ionising radiation
13.3 High pressure processing
13.4 Pulsed electric field
13.5 Ozone processing
13.6 Ultrasound processing
13.7 Supercritical carbon dioxide
13.8 Conclusions
References

PART IV STABILITY OF PHYTOCHEMICALS

14 Stability of phytochemicals during grain processing

Laura Alvarez-Jubete and Uma Tiwari

14.1 Introduction
14.2 Germination
14.3 Milling
14.4 Fermentation
14.5 Baking
14.6 Roasting
14.7 Extrusion cooking
14.8 Parboiling
14.9 Conclusions
References
## Factors affecting phytochemical stability

Jun Yang, Xiangjiu He, and Dongjun Zhao

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>332</td>
</tr>
<tr>
<td>15.2 Effect of pH</td>
<td>335</td>
</tr>
<tr>
<td>15.3 Concentration</td>
<td>337</td>
</tr>
<tr>
<td>15.4 Processing</td>
<td>338</td>
</tr>
<tr>
<td>15.4.1 Processing temperature</td>
<td>338</td>
</tr>
<tr>
<td>15.4.2 Processing type</td>
<td>341</td>
</tr>
<tr>
<td>15.5 Enzymes</td>
<td>346</td>
</tr>
<tr>
<td>15.6 Structure</td>
<td>349</td>
</tr>
<tr>
<td>15.7 Copigments</td>
<td>350</td>
</tr>
<tr>
<td>15.8 Matrix</td>
<td>353</td>
</tr>
<tr>
<td>15.8.1 Presence of SO₂</td>
<td>353</td>
</tr>
<tr>
<td>15.8.2 Presence of ascorbic acids and other organic acids</td>
<td>354</td>
</tr>
<tr>
<td>15.8.3 Presence of metallic ions</td>
<td>355</td>
</tr>
<tr>
<td>15.8.4 Others</td>
<td>356</td>
</tr>
<tr>
<td>15.9 Storage conditions</td>
<td>357</td>
</tr>
<tr>
<td>15.9.1 Light</td>
<td>357</td>
</tr>
<tr>
<td>15.9.2 Temperature</td>
<td>358</td>
</tr>
<tr>
<td>15.9.3 Relative humidity (RH)</td>
<td>360</td>
</tr>
<tr>
<td>15.9.4 Water activity (a_w)</td>
<td>361</td>
</tr>
<tr>
<td>15.9.5 Atmosphere</td>
<td>361</td>
</tr>
<tr>
<td>15.10 Conclusion</td>
<td>363</td>
</tr>
<tr>
<td>References</td>
<td>364</td>
</tr>
</tbody>
</table>

## Stability of phytochemicals at the point of sale

Pradeep Singh Negi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>375</td>
</tr>
<tr>
<td>16.2 Stability of phytochemicals during storage</td>
<td>375</td>
</tr>
<tr>
<td>16.2.1 Effect of water activity</td>
<td>376</td>
</tr>
<tr>
<td>16.2.2 Effect of temperature</td>
<td>376</td>
</tr>
<tr>
<td>16.2.3 Effect of light and oxidation</td>
<td>379</td>
</tr>
<tr>
<td>16.2.4 Effect of pH</td>
<td>381</td>
</tr>
<tr>
<td>16.3 Food application and stability of phytochemicals</td>
<td>381</td>
</tr>
<tr>
<td>16.4 Edible coatings for enhancement of phytochemical stability</td>
<td>382</td>
</tr>
<tr>
<td>16.5 Modified atmosphere storage for enhanced phytochemical stability</td>
<td>383</td>
</tr>
<tr>
<td>16.6 Bioactive packaging and micro encapsulation for enhanced phytochemical stability</td>
<td>384</td>
</tr>
<tr>
<td>16.7 Conclusions</td>
<td>387</td>
</tr>
<tr>
<td>References</td>
<td>387</td>
</tr>
</tbody>
</table>

## PART V ANALYSIS AND APPLICATION

### 17 Conventional extraction techniques for phytochemicals

Niamh Harbourne, Eunice Marete, Jean Christophe Jacquier and Dolores O'Riordan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>399</td>
</tr>
<tr>
<td>17.2 Theory and principles of extraction</td>
<td>399</td>
</tr>
</tbody>
</table>
## 17 Conventional extraction methods

### 17.2 Factors affecting extraction methods

#### 17.2.1 Conventional extraction methods

- Page 400

#### 17.2.2 Factors affecting extraction methods

- Page 401

#### 17.2.3 Limitations of extraction techniques

- Page 404

### 17.3 Examples of conventional techniques

#### 17.3.1 Roots

- Page 405

#### 17.3.2 Leaves and stems

- Page 405

#### 17.3.3 Flowers

- Page 407

#### 17.3.4 Fruits

- Page 407

### 17.4 Conclusion

- Page 409

References

- Page 409

## 18 Novel extraction techniques for phytochemicals

Hilde H. Wijngaard, Olivera Trifunovic and Peter Bongers

### 18.1 Introduction

- Page 412

### 18.2 Pressurised solvents

#### 18.2.1 Supercritical fluid extraction

- Page 413

#### 18.2.2 Pressurised liquid extraction (PLE)

- Page 419

### 18.3 Enzyme assisted extraction

- Page 421

### 18.4 Non-thermal processing assisted extraction

#### 18.4.1 Ultrasound

- Page 423

#### 18.4.2 Pulsed electric fields

- Page 424

### 18.5 Challenges and future of novel extraction techniques

- Page 426

References

- Page 428

## 19 Analytical techniques for phytochemicals

Rong Tsao and Hongyan Li

### 19.1 Introduction

- Page 434

### 19.2 Sample preparation

#### 19.2.1 Extraction

- Page 436

#### 19.2.2 Sample clean-up

- Page 438

### 19.3 Non-chromatographic spectrophotometric methods

#### 19.3.1 Total phenolic content (TPC)

- Page 440

#### 19.3.2 Total flavonoid content (TFC)

- Page 440

#### 19.3.3 Total anthocyanin content (TAC)

- Page 441

#### 19.3.4 Total carotenoid content (TCC)

- Page 441

#### 19.3.5 Methods based on fluorescence

- Page 441

#### 19.3.6 Colorimetric methods for other phytochemicals

- Page 442

### 19.4 Chromatographic methods

#### 19.4.1 Conventional chromatographic methods

- Page 442

#### 19.4.2 Instrumental chromatographic methods

- Page 443

References

- Page 447

## 20 Antioxidant activity of phytochemicals

Ankit Patras, Yvonne V. Yuan, Helena Soares Costa and Ana Sanches-Silva

### 20.1 Introduction

- Page 452

### 20.2 Measurement of antioxidant activity

#### 20.2.1 Assays involving a biological substrate

- Page 453
20.2.2 Assays involving a non-biological substrate 454
20.2.3 Ferrous oxidation–xylenol orange (FOX) assay 455
20.2.4 Ferric thiocyanate (FTC) assay 455
20.2.5 Hydroxyl radical scavenging deoxyribose assay 456
20.2.6 1,1-diphenyl-2-picrylhydrazyl (DPPH•) stable free radical scavenging assay 456
20.2.7 Azo dyes as sources of stable free radicals in antioxidant assays 457
20.2.8 Oxygen radical absorbance capacity (ORAC) assay 458
20.2.9 Total radical-trapping antioxidant parameter (TRAP) assay 459
20.2.10 ABTS•+ radical cation scavenging activity 460
20.2.11 Ferric reducing ability of plasma (FRAP) assay 460
20.2.12 Inhibition of linoleic acid oxidation as a measure of antioxidant activity 461
20.2.13 Other assays – methods based on the chemiluminescence (CL) of luminol 462
20.2.14 Comparison of various methods for determining antioxidant activity: general perspectives 462
20.2.15 Discrepancies over antioxidant measurement 463
20.3 Concluding remarks 465
References 466

21 Industrial applications of phytochemicals 473
Juan Valverde

21.1 Introduction 473
21.2 Phytochemicals as food additives 474
21.2.1 Flavourings 475
21.2.2 Sweeteners and sugar substitutes 476
21.2.3 Colouring substances 477
21.2.4 Antimicrobial agents/essential oils 478
21.2.5 Antioxidants 480
21.3 Stabilisation of fats, frying oils and fried products 481
21.4 Stabilisation and development of other food products 488
21.4.1 Anti-browning effect of phytochemicals in foods 488
21.4.2 Colour Stabilisation in meat products 490
21.4.3 Antimicrobials to extends shelf life 491
21.5 Nutraceutical applications 492
21.5.1 Phytosterol and phytostanol enriched foods 492
21.5.2 Resveratrol enriched drinks and beverages 492
21.5.3 Isoflavone enriched dairy-like products 493
21.5.4 β-glucans 493
21.5.5 Flavonoids 494
21.6 Miscellaneous industrial applications 494
21.6.1 Cosmetic applications 494
21.6.2 Bio-pesticides 495
References 495

Index 502