Teide Volcano

Geology and Eruptions of a Highly Differentiated Oceanic Stratovolcano
Contents

1 From Myth to Science: The Contribution of Mount Teide to the Advancement of Volcanology 1

1.1 Introduction ... 1

1.2 Teide Volcano in Classical Mythology 5

1.3 Mt. Teide in the Pre-Hispanic World 5

1.4 References in the Fourteenth and Fifteenth Centuries 6

1.5 References to Teide Volcano at the Dawn of Science: The Renaissance and Baroque Periods (Sixteenth and Seventeenth centuries) 8

1.6 The Contribution of the Great Eighteenth and Nineteenth Century Naturalists ... 9

1.7 Mount Teide in the Framework of Modern Volcanology: The Twentieth and Twenty-first Centuries 14

References ... 20

2 Geological and Geodynamic Context of the Teide Volcanic Complex ... 23

2.1 Introduction ... 23

2.2 The Canary Volcanic Province 23

2.3 Genetic Models for the Canaries 25

2.4 Hot Spot Dynamics and Plant Radiation 26

2.5 Absence of Significant Subsidence as a Crucial Feature in the Canaries ... 27

2.6 Teide Volcano and the Evolution of the Canaries 28

2.7 Tenerife Before the Construction of the Teide Volcanic Complex .. 30

2.7.1 Shield Stage ... 30

2.7.2 The Rejuvenation Stage of Tenerife: Las Cañadas Volcano ... 32

References ... 34
8.8 General Features and Trends of the Last 2 ky of TVC Volcanism .. 152
References ... 152

9 Timing, Distribution and Petrological Evolution of the Teide-Pico Viejo Volcanic Complex 155
9.1 Introduction .. 156
9.2 The Significance of Felsic Volcanism in Ocean Islands ... 158
9.3 Petrological History of Tenerife Island Prior to Teide Formation .. 159
9.4 Petrological Description of the Teide-Pico Viejo Succession .. 160
9.4.1 Mafic Lavas ... 160
9.4.2 Transitional Lavas ... 162
9.4.3 Felsic Lavas ... 162
9.5 Trace Element Characterisation of the Teide-Pico Viejo Succession ... 164
9.6 Volumetric and Spatio-Chronological Characterisation of the Teide-Pico Viejo Succession 167
References ... 169

10 Magmatic Differentiation in the Teide-Pico Viejo Succession: Isotope Analysis as a Key to Deciphering the Origin of Phonolite Magma ... 173
10.1 Introduction .. 174
10.2 The Application of Radiogenic Isotopes in Igneous Petrology ... 174
10.3 Previous Work and Research Techniques .. 175
10.4 Sr-Nd-Pb-O Systematics at Teide-Pico Viejo .. 176
10.5 Discussion .. 177
10.5.1 Sediment Contamination? 177
10.5.2 Constraints on the Assimilant 178
10.5.3 Heterogeneous Oxygen Isotope Composition of the Assimilant .. 181
10.5.4 Bulk Melting of Country Rock 181
10.5.5 Quantification of Differentiation Processes at Teide-Pico Viejo .. 182
10.5.6 Mechanisms for Crustal Melting 183
10.6 Petrogenesis at Teide-Pico Viejo .. 187
References ... 188

11 Magma Mixing in the 1100 AD Montaña Reventada Composite Lava Flow: Interaction of Rift Zone and Central Complex Magmatism ... 191
11.1 Introduction .. 192
11.2 The Montaña Reventada Lava Flow .. 193
11.3 Research Techniques .. 194
11.4 Petrological and Geochemical Observations .. 195
 11.4.1 Petrography .. 195
 11.4.2 Whole-Rock and Groundmass Composition 198

11.5 Emplacement and Formation of the Montaña Reventada Lava Flow 200
 11.5.1 Subaerial Emplacement of Lava .. 200
 11.5.2 Origin of Inclusions .. 201
 11.5.3 Subsurface Dynamics .. 203
 11.5.4 Timescale of Basanite-Phonolite Interaction 205
 11.5.5 Mixing Mechanism ... 206

11.6 Eruption Sequence ... 209
References .. 209

12 Eruptive Styles at the Teide Volcanic Complex 213
 12.1 Introduction .. 214
 12.2 Effusive Eruptions in the TVC .. 215
 12.2.1 Eruptive Vent Distribution ... 217
 12.2.2 Lava Run-Out Lengths ... 217
 12.3 Magmatic Explosion Eruptions in the TVC 218
 12.3.1 The Montaña Blanca Subplinian Event 220
 12.3.2 Gravitational Collapse of Phonolitic Domes and Lava Flow-Driven
 Explosive Eruptions .. 220
 12.4 Phreatomagmatic Explosive Eruptions in the TVC 221
 12.4.1 Las Calvas del Teide .. 222
 12.4.2 Phreatomagmatism in the Pico Viejo Volcano 224
 12.4.3 Phreatomagmatism in the Canary Islands 227
References .. 230

13 Geophysical Investigations of the Teide Volcanic Complex 233
 13.1 Introduction .. 233
 13.2 Resolving the Current P-T Conditions of the Teide Magma Chamber
 Using Gas Emission Data ... 234
 13.3 Gravity Modelling .. 236
 13.4 Aeromagnetic Surveys ... 238
 13.5 Seismicity ... 239
 13.5.1 Seismic Profiles .. 239
 13.5.2 Microseismicity ... 242
 13.6 Ground Deformation ... 244
 13.7 The Broader Picture .. 245
References .. 246

14 Geological Hazards in the Teide Volcanic Complex 249
 14.1 Introduction .. 250
 14.2 Seismicity and Seismic Hazards in the TVC 250
14.3 Volcanic Hazards in the TVC 257
14.4 Lava Flow Hazards 257
14.5 Hazard Maps ... 259
14.6 Topographic Control on Lava Flow Paths
and Lava Inundation 262
 14.6.1 Inundation by a Potential Eruption Close
to the 1706 Garachico Event 263
 14.6.2 Overflow of the Las Cañadas Caldera 263
14.7 Hazards Related to Felsic Volcanism in the TVC 264
14.8 Ground Deformation Hazards 266
14.9 The Present State of the TVC Plumbing System 267
14.10 The Present Risk Mitigation Challenge 268
References .. 270

Author Biographies .. 273

Index .. 275