Contents

Preface xi

1 Overview of Membrane Separation Processes 1–15

1.1 Equilibrium and Rate Governed Separation 1
1.2 What is a Membrane 2
1.3 Basic Principle of Membrane Separation 3
1.4 Historical Development of Membranes 4
1.5 Classification of Membrane Processes 5
1.6 Advantages of Membrane Processes 9
1.7 Disadvantages 10
1.8 Major Areas of Application 10
 1.8.1 Chemical Industry 12
 1.8.2 Pharmaceutical Industry 12
 1.8.3 Food and Dairy Industry 12
 1.8.4 Biotechnology Industry 13
1.9 Future Prospects 14

Short Questions 15

2 Membrane Types, Materials, Preparation and Characterization 16–51

2.1 Types of Synthetic Membranes 16
 2.1.1 Microporous Membranes 17
 2.1.2 Asymmetric Membrane 18
 2.1.3 Thin Film Composite 18
 2.1.4 Electrically Charged 19
 2.1.5 Inorganic Membrane 20
2.2 Membrane Modules 22
2.3 Typical Flow Patterns 28
2.4 Membrane Materials 29
2.5 Pore Characteristics 34
2.6 General Methods of Membrane Manufacture 35
 2.6.1 Phase Inversion Process 35
2.6.2 Track-etch Method 37
2.6.3 Sol-gel Peptisation Method 38
2.6.4 Interfacial Polymerization 38
2.6.5 Melt Pressing 39
2.6.6 Film Stretching 39
2.6.7 Template Leaching 40
2.6.8 Preparation of Ion-exchange Membranes 40

2.7 Measurement of Pore Size and Solute Rejection Properties 41
2.7.1 Visualization Methods 41
2.7.2 Hydraulic Permeability 42
2.7.3 Bubble Pressure or Point
(Also Gas–Liquid Porosimetry) 42
2.7.4 Liquid Displacement
(Also Liquid–Liquid Porosimetry) 43
2.7.5 Hg Porosimetry 43
2.7.6 Gas–Liquid Diffusion 44
2.7.7 Permporometry 44
2.7.8 Gas Adsorption-Desorption (Also BET Method) 45
2.7.9 Thermoporometry 45
2.7.10 Molecular Weight Cut Off (MWCO) 45
2.7.11 Microbial Challenge Test 47

2.8 Measurement and Interpretation of Surface Properties 48

Short Questions and Problems 49

3 Reverse Osmosis 52–88

3.1 Concept of Osmosis 52
3.1.1 Determination of Osmotic Pressure 54
3.1.2 Thermodynamic Consideration of Osmosis 55
3.1.3 Isotonic Solution 57

3.2 The Phenomenon of Reverse Osmosis 58
3.2.1 Pressure Requirement 59
3.2.2 High Pressure and Low Pressure RO 59
3.2.3 Advantages of Reverse Osmosis 59
3.2.4 Membrane Materials and Modules 60
3.2.5 Selection Criteria of RO Membrane 61

3.3 Models for Reverse Osmosis Transport 63
3.3.1 Kedem–Katchalsky Model 63
3.3.2 Spiegler–Kedem Model 64
3.3.3 Solution-Diffusion (SD) Model 64
3.3.4 Pore Transport Model 66
3.3.5 Modified Solution-Diffusion Model 66

3.4 Design and Operating Parameters 71
3.5 Concentration Polarization 72
3.5.1 Cake Enhanced Concentration Polarization (CECP) 73
4 Nanofiltration

4.1 Principle of Nanofiltration 89
4.2 Nanofiltration Membranes 90
 4.2.1 Transport Mechanism in NF Membranes 90
 4.2.2 Transport Mechanism of Charged Solutes 91
 4.2.3 Parameters Affecting the Performance of NF Membranes 91
4.3 Mass Transfer in Nanofiltration 92
 4.3.1 Fouling Model 93
4.4 Process Limitations 96
4.5 Industrial Applications 97
Notations 99
Short Questions 100

5 Ultrafiltration

5.1 Basic Principle of Ultrafiltration 101
 5.1.1 Advantages of Ultrafiltration 102
 5.1.2 Ultrafiltration vis-a-vis Conventional Filtration 103
5.2 Ultrafiltration Membranes 103
 5.2.1 Membrane Modules 104
 5.2.2 Membrane Characterization 104
5.3 Configuration of UF Unit 105
5.4 Types of Devices in Ultrafiltration 106
 5.4.1 Funnel 106
 5.4.2 In-line Filters 107
 5.4.3 Centrifuge Tube Devices 107
 5.4.4 Diffusion Devices 108
 5.4.5 Stirred Cell Modules 108
 5.4.6 Cross Flow Modules 108
5.5 Factors Affecting the Performance of Ultrafiltration 109
5.6 Flux Equation for Ultrafiltration 110
VI Contents

5.7 Models for Solvent Flux 112
 5.7.1 Resistance Model 112
 5.7.2 Gel Polarization Model 113
5.8 Fouling and Flux Decline 117
5.9 Methods to Reduce Concentration Polarization 118
5.10 Energy Considerations 119
5.11 Micellar-enhanced Ultrafiltration 119
5.12 Affinity Ultrafiltration 121
 5.12.1 Affinity Ultrafiltration in Protein Purification 122
5.13 Applications 123
Notations 126
Short Questions 127
Problems 127

6 Microfiltration 130–148

6.1 Basic Principle of Microfiltration 130
 6.1.1 Cross Flow Microfiltration 131
 6.1.2 Dead-end Microfiltration 131
6.2 Microfiltration Membranes 132
 6.2.1 Membrane Pore Configuration 132
6.3 Mechanism of Transport 134
6.4 Retention Characteristics 137
6.5 Flow Characteristics 137
6.6 Membrane Plugging and Throughput 138
6.7 Fouling in Microfiltration Membranes 141
 6.7.1 External Fouling 141
 6.7.2 Internal Fouling 142
 6.7.3 Theoretical Models for Membrane Fouling 143
 6.7.4 Factors Affecting Membrane Fouling 144
 6.7.5 Control of Fouling 145
 6.7.6 Membrane Cleaning 145
6.8 Energy Consideration 145
6.9 Applications 146
Short Questions and Problems 147

7 Dialysis 149–165

7.1 Principle of Dialysis 149
7.2 Dialysis Systems 150
7.3 Dialysis Membranes 151
7.4 Mass Transfer in Dialysis 152
7.5 Applications 154
 7.5.1 Hemodialysis 154
 7.5.2 Removal of Alcohol From Beer to Produce a Reduced Alcohol Beer 159
 7.5.3 Other Applications of Dialysis 159
8 Gas Separation 166–199

8.1 Basic Principle 166
8.2 Membranes for Gas Separation 167
8.3 Membrane Modules 168
8.4 Fundamental Mechanism of Gas Transport 169
 8.4.1 Knudsen Diffusion 169
 8.4.2 Molecular Sieving 170
 8.4.3 Solution-Diffusion 170
 8.4.4 Dual Sorption Model 174
 8.4.5 Facilitated Transport 175
 8.4.6 Microscopic Models 177
8.5 Factors Affecting Gas Permeation 177
 8.5.1 Temperature 177
 8.5.2 Pressure 178
 8.5.3 Plasticization 178
 8.5.4 Permeant Condensability 179
 8.5.5 Polymer Crystallinity 179
8.6 Complete Mixing Model 179
 8.6.1 Solution of Equations 182
 8.6.2 Equations for Multicomponent Mixtures 183
8.7 Cross Flow Model 184
8.8 Counter Current Model 187
8.9 Applications 192

Notations 195
Short Questions 196
Problems 197

9 Pervaporation 200–218

9.1 Basic Principle 200
9.2 Advantages of Pervaporation 201
9.3 Membrane Characteristics 202
9.4 Mass Transfer in Pervaporation 203
 9.4.1 Permeation Through the Membrane 204
9.5 Thermodynamic Considerations 206
9.6 Design of a Pervaporation Module 208
9.7 Concentration Polarization 211
9.8 Factors Affecting Pervaporation 211
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9 Temperature Drop at the Membrane Interface</td>
<td>212</td>
</tr>
<tr>
<td>9.10 Applications</td>
<td>213</td>
</tr>
<tr>
<td>Notations</td>
<td>217</td>
</tr>
<tr>
<td>Short Questions and Problems</td>
<td>218</td>
</tr>
<tr>
<td>10 Ion Exchange Membrane Process: Electrodialysis</td>
<td>219-238</td>
</tr>
<tr>
<td>10.1 Basic Principle</td>
<td>219</td>
</tr>
<tr>
<td>10.2 Ion Exchange Membranes</td>
<td>221</td>
</tr>
<tr>
<td>10.2.1 Ion Exchange Membranes in Chlor-Alkali Cells</td>
<td>223</td>
</tr>
<tr>
<td>10.2.2 Homogeneous and Heterogeneous Membranes</td>
<td>224</td>
</tr>
<tr>
<td>10.2.3 Bipolar Membrane</td>
<td>224</td>
</tr>
<tr>
<td>10.2.4 Permselectivity</td>
<td>225</td>
</tr>
<tr>
<td>10.3 Energy Requirement, Current Utilization, Efficiency</td>
<td>225</td>
</tr>
<tr>
<td>10.4 Concentration Polarization and Limiting Current Density</td>
<td>228</td>
</tr>
<tr>
<td>10.5 Other Operating Parameters</td>
<td>230</td>
</tr>
<tr>
<td>10.6 Batch and Continuous Electrodialysis</td>
<td>230</td>
</tr>
<tr>
<td>10.7 Electrodialysis Reversal (EDR)</td>
<td>232</td>
</tr>
<tr>
<td>10.8 Electrodeionization (EDI)</td>
<td>232</td>
</tr>
<tr>
<td>10.8.1 Working Principle</td>
<td>233</td>
</tr>
<tr>
<td>10.8.2 Advantages and Disadvantages of EDI</td>
<td>234</td>
</tr>
<tr>
<td>10.9 Applications of Electrodialysis</td>
<td>235</td>
</tr>
<tr>
<td>Short Questions</td>
<td>237</td>
</tr>
<tr>
<td>Problems</td>
<td>238</td>
</tr>
<tr>
<td>11 Introduction to Liquid Membrane</td>
<td>239-251</td>
</tr>
<tr>
<td>11.1 Benefits of Liquid Membranes</td>
<td>239</td>
</tr>
<tr>
<td>11.2 Types of Liquid Membranes</td>
<td>240</td>
</tr>
<tr>
<td>11.2.1 Bulk Liquid Membranes</td>
<td>240</td>
</tr>
<tr>
<td>11.2.2 Emulsion Liquid Membranes (ELM)</td>
<td>241</td>
</tr>
<tr>
<td>11.2.3 Thin Sheet Supported Liquid Membranes</td>
<td>243</td>
</tr>
<tr>
<td>11.2.4 Hollow Fibre Supported Liquid Membranes</td>
<td>244</td>
</tr>
<tr>
<td>11.2.5 Polymer Inclusion Membrane</td>
<td>245</td>
</tr>
<tr>
<td>11.3 Mechanism of Mass Transfer in Liquid Membranes</td>
<td>246</td>
</tr>
<tr>
<td>11.3.1 Simple Permeation Mechanism</td>
<td>246</td>
</tr>
<tr>
<td>11.3.2 Facilitated Transport Mechanism</td>
<td>247</td>
</tr>
<tr>
<td>11.4 Applications</td>
<td>248</td>
</tr>
<tr>
<td>Short Questions</td>
<td>251</td>
</tr>
<tr>
<td>12 Facilitated Transport</td>
<td>252-264</td>
</tr>
<tr>
<td>12.1 Mechanism of Facilitated Transport</td>
<td>253</td>
</tr>
<tr>
<td>12.2 Coupled Transport</td>
<td>255</td>
</tr>
<tr>
<td>12.2.1 Carrier Agent</td>
<td>257</td>
</tr>
<tr>
<td>12.2.2 Competitive Facilitated Transport with Two Permeants and One Carrier</td>
<td>257</td>
</tr>
</tbody>
</table>
12.3 Active and Passive Transport 261
12.3.1 Symport and Antiport 261
12.4 Some Potential Applications of Facilitated Transport 263
Short Questions and Problems 263

13 Other Membrane Processes 265–285
13.1 Membrane Contactor 265
13.1.1 Advantages and Disadvantages 266
13.1.2 Principle of Operation 266
13.1.3 Applications 268
13.2 Membrane Distillation 268
13.2.1 Mechanism 270
13.3 Membrane Reactors 271
13.4 Membrane Bioreactors 275
13.4.1 Membrane Recycle Bioreactor 276
13.4.2 Plug Flow Bioreactor 277
13.5 Charge Mosaic Membranes 277
13.5.1 Piezodialysis 279
13.6 Perstraction 279
13.6.1 Flux and Separation in Perstraction 280
13.7 Membrane Chromatography 280
13.8 PEM Hydrogen Fuel Cell 281
13.9 Integration of Membrane and Non-membrane Processes 283
Short Questions 284

14 Biomedical Applications of Membranes 286–295
14.1 Blood Oxygenator 286
14.2 Controlled Drug Delivery 287
14.2.1 Controlled Release Mechanisms 289
14.2.2 Polymers Used in Controlled Release 290
14.2.3 Application of Controlled Release 291
14.3 Plasmapheresis 292
14.4 Membranes in Bioartificial Organs 293
Short Questions 295

Appendix 297–306
References and Further Reading 307–317
Index 319–322