Raman Spectroscopy and its Application in Nanostructures

SHU-LIN ZHANG

Peking University, Beijing
Contents

Preface ix
Acknowledgements xiii

Part I Fundamentals of Raman Spectroscopy 1

1 Basic Knowledge of Raman Spectroscopy 3
 1.1 Spectrum and Spectroscopy 3
 1.2 Scattering and Raman Scattering 5
 1.3 Fundamental Features of Raman Scattering Spectra 9
 1.4 Discovery of the Raman Scattering Effects and Observation of the First Raman Spectrum 10
 1.5 Historical Development of Raman Spectroscopy 13
 References 16

2 Fundamental Theory of Light Scattering 19
 2.1 Description of Scattering 20
 2.2 Macroscopic Theory of Light Scattering 26
 2.3 Microscopic Theory of Light Scattering 39
 References 45

3 Experimental Foundation of Raman Spectroscopy 47
 3.1 Generality of Raman Spectral Measurements 47
 3.2 Experimental Apparatus 56
 3.3 Main Performance Parameters of Raman Spectrometers 79
 3.4 Experimental Measurements 83
 3.5 Data Processing of Recorded Raman Spectra 88
 3.6 A Typical Example of Vibration Raman Spectra – Raman Spectrum of CCl₄ 94
 3.7 Interference Spectrometer and Fourier Transform Optics 97
 References 104

4 Introduction to Modern Raman Spectroscopy I-New Raman Spectroscopic Branch Classified Based on Spectral Features 105
 4.1 Non-visible Excited Raman Spectroscopy 106
 4.2 Resonant Raman Spectroscopy (RRS) 106
 4.3 High-Order/Multiple-Phonon Raman Spectroscopy (MPRS) 110
4.4 Raman Spectroscopy under Extreme Conditions 114
4.5 Polarized Raman Spectroscopy (PRS) 115
4.6 Time-Resolved (Transient) Raman Spectroscopy (TRRS) 116
4.7 Space-Resolved Micro-Raman Spectroscopy and Raman Microscopy 118
4.8 Surface-enhanced Raman Spectroscopy (SERS) 119
4.9 Near-Field Raman Spectroscopy (NFRS) 121
4.10 Tip-enhanced Raman Spectroscopy (TERS) 130
4.11 Non-linear and Coherent Raman Spectroscopy (NLRS) 136
4.12 Coherent Anti-Stokes Raman Scattering (CARS) 138
4.13 Stimulated Raman Scattering (SRS) 145
References 150

5 Introduction to Modern Raman Spectroscopy II-New Raman Spectroscopic Branch Classified Based on Applied Objects 153
5.1 Common Spectroscopic Basis Related to the Study and Application of Raman Spectroscopy 153
5.2 Chemistry Raman Spectroscopy 158
5.3 Condensed Matter Raman Spectroscopy 160
5.4 Biological and Medical Raman Spectroscopy 166
5.5 Geology and Mineralogy Raman Spectroscopy 175
5.6 Art and Archeology Raman Spectroscopy 177
5.7 Industry Raman Spectroscopy 178
5.8 Raman Spectroscopy in National Security and Judicature 181
References 182

Part II Study of Nanostructures by Raman Spectroscopy 185

6 General Knowledge of Nanostructures 187
6.1 Nanostructure, Characteristic Length, and Dimension 187
6.2 Nanomaterials 188
6.3 Properties of Nanostructures 190
6.4 Finite Size and Specific Surface 192
6.5 The Study of Nanostructure 196
References 197

7 Theoretical Fundamentals of Raman Scattering in Solids 199
7.1 General Knowledge of Lattice Dynamics 200
7.2 Microscopic Model of Lattice Dynamics 213
7.3 Macroscopic Model of Lattice Dynamics 222
7.4 Lattice Dynamics of Amorphous Matter 229
7.5 Raman Scattering Theories in Solids 230
References 246
8 Theoretical Fundamentals of Raman Scattering in Nanostructures
8.1 Superlattices
8.2 Nanostructure Materials
8.3 Micro-Crystal Models
8.4 Amorphous Feature and PDOS Expression of Nanostructure Raman Spectra
8.5 First-Principles/ab initio Calculation of Nanostructure Raman Spectra
References

9 Routine Raman Spectra of Nanostructures
9.1 Characteristic Raman Spectra of Semiconductor Superlattices
9.2 Characteristic Raman Spectra of Nanosilicon
9.3 Characteristic Raman Spectra of Nanocarbons
9.4 Characteristic Raman Spectra of Polar Nano-Semiconductors
9.5 Multiple-Phonon Raman Spectra
9.6 Anti-Stokes Raman Spectra
References

10 Raman Spectroscopy of Nanostructures with Exciting Laser Features
10.1 Raman Spectra with Changing of Exciting Light Wavelengths – Resonant Raman Spectra
10.2 Raman Spectra with Exciting Laser Polarization
10.3 Raman Spectra with Exciting Laser Intensity
References

11 Raman Spectra with Samples of Nanostructures
11.1 Effects of Sample Sizes on Raman Spectra of Nanostructures
11.2 Effects of Sample Shapes on Raman Spectra in Nanostructures
11.3 Effects of Sample Component and Micro-structure on Raman Spectra in Nanostructures
References

12 Electron-Phonon Interactions in Raman Spectroscopy of Nanostructures
12.1 Abnormal Raman Spectral Features in Nanostructures
12.2 Origin of No FSE on Phonons
12.3 Fröhlich Interaction in Nanostructures
12.4 Theoretical Raman Spectra of Non-polar and Polar Nano-Semiconductors
12.5 Amorphous Feature of Nanocrystal Raman Spectra of No FSE on Phonons and the Breaking of Translation Symmetry in Nano-Semiconductors
References
Appendices

Appendix I Electromagnetic Waves and Lasers
 I.1 Electromagnetic Wavelength
 I.2 Laser Types
 I.3 Laser Lines and Ionic/Atomic Lines of Gas Lasers used Commonly in Raman Spectroscopy

Appendix II Standard Spectral Lines
 II.1 Spectral Lines of Mercury Lamp in Visible Range
 II.2 Standard Lines of Neon Spectral Lamp

Appendix III Raman Tensors
 III.1 Raman Tensors and Symmetric Attributes
 III.2 Applications of Raman Tensors

Appendix IV Constitution, Polarity, and Symmetry Structure of Crystals
 IV.1 Constitution, Polarity, and Crystal Structure of Crystals
 IV.2 Syngony and its Basic Vector, Bravais Lattice, and Point Group Symmetry

Appendix V Brillouin Zones, Vibration Modes, and Raman Spectra of Typical Ordinary and Semiconducting Crystals
 V.1 Brillouin Zones and Symmetrical Points of Cubic System
 V.2 Vibrational Modes and their Symmetries of Several Crystals
 V.3 Structures, Symmetries, and Raman Spectra of Several Semiconducting Crystals

Appendix VI Physical Parameters, Constants, and Units
 VI.1 Periodic Table of the Elements
 VI.2 Electronic Structure of Atoms
 VI.3 Common Physical Constant and the Performance Parameters of Optical Glass

Index