Table of contents

List of figures
- xiii

List of tables
- xvii

Preface
- xix

Acknowledgement
- xxi

Landfill gas to energy: International status and prospects

1. Landfill gas to energy: International status and prospects
 1.1 Introduction
 1.2 Importance of landfill methane
 1.3 International landfill industry
 - 1.3.1 Africa
 - 1.3.2 East Asia and the Pacific
 - 1.3.3 South and West Asia
 - 1.3.4 Europe
 - 1.3.5 Latin America and the Caribbean
 - 1.3.6 North America
 - 1.3.7 France
 - 1.3.8 Germany
 - 1.3.9 The Netherlands
 - 1.3.10 Spain
 - 1.3.11 U.K
 - 1.3.12 Canada
 1.4 LFG Generation Mechanism
 - 1.4.1 Phases of LFG generation
 - 1.4.2 Landfill gas properties and hazards
 - 1.4.3 Factors affecting LFG generation
 1.5 Factors affecting LFG transport
 1.6 LFG characteristics and condensate
 1.7 Energy potential of LFG
 1.8 Benefits of LFG recovery
 References

Planning and design of LFG recovery system

2. Planning and design of LFG recovery system
 2.1 Criteria for identifying suitability of landfill sites for LFG recovery
 - 2.1.1 Planning and design
 - 2.1.2 Construction
3 Landfill gas modeling

3.1 Introduction

3.2 Conceptualization of LFG model

3.3 Benefits of LFG modeling

- 3.3.1 Sizing LFG extraction system
- 3.3.2 Projections of LFG emissions
- 3.3.3 Monitoring and regulatory compliance

3.4 Classification of LFG models

- 3.4.1 Zero-order model
- 3.4.2 Constant rate model
- 3.4.3 First-order model
- 3.4.4 Modified first-order model
- 3.4.5 Multiphase model
- 3.4.6 Second-order model
- 3.4.7 Scholl Canyon model
- 3.4.8 Stoichiometric model
- 3.4.9 Triangular model
- 3.4.10 Palos Verdes model
- 3.4.11 Sheldon Arleta model
- 3.4.12 GASFILL model
- 3.4.13 LandGEM model
- 3.4.14 LFGGEN model
- 3.4.15 EMCON MGM model
- 3.4.16 TNO model
- 3.4.17 Multi-phase model (Afvalzorg)
- 3.4.18 GasSim model
- 3.4.19 EPER model France
- 3.4.20 EPER model Germany
- 3.4.21 Colombia model
- 3.4.22 CALMIM model
- 3.4.23 Philippines model
- 3.4.24 Thailand model
- 3.4.25 Ukraine model
- 3.4.26 China model
- 3.4.27 Mexico model
- 3.4.28 Ecuador model
- 3.4.29 Central America model
- 3.4.30 IPCC model
- 3.4.31 RET screen model
- 3.4.32 IGNI Model
- 3.4.33 Finite element model
- 3.4.34 Tabasaran model

3.5 Uncertainties in LFG model predictions

3.6 Validation of LFG models

3.7 Customization of LFG models

- 3.7.1 Methane generation potential
- 3.7.2 Degradable organic carbon
4 LFG monitoring and economic feasibility evaluation

4.1 LFG monitoring
 4.1.1 Monitoring locations within the waste body
 4.1.2 Monitoring locations outside the waste body
 4.1.3 Pressure monitoring
 4.1.4 Monitoring frequency
 4.1.5 LFG trigger levels
 4.1.6 Monitoring surface emissions
 4.1.7 Monitoring locations
 4.1.8 Parameters for analysis
 4.1.9 LFG within and outside the waste body
 4.1.20 Flare and utilization plants

4.2 Test methods/protocols for LFG monitoring

4.3 LFG migration and dynamics in borewell

4.4 Standardized approach for LFG probe assessment
 4.4.1 Pre-assessment activities
 4.4.2 Initial monitoring probe condition assessment
 4.4.3 Gas monitoring assessment
 4.4.4 Vacuum testing
 4.4.5 Video borescope inspection
 4.4.6 Lithology evaluation

4.5 Economic feasibility of LFG to Energy project
 4.5.1 Capital and O&M cost
 4.5.2 Energy sales revenue
 4.5.3 Economic feasibility
 4.5.4 Comparison of economically feasible options
 4.5.5 Project financing options
 4.5.6 Perspective of lenders/investors
 4.5.7 Financing approaches
 4.5.8 Evaluation of costs and benefits
 4.5.9 Conclusions

References

5 Landfill gas treatment technologies

5.1 Introduction
5.2 Passive venting of LFG
5.3 LFG combustion mechanism
5.4 LFG flaring system
 5.4.1 Design of a flaring system
 5.4.2 Types of flaring system
Table of contents

5.4.3 Description of LFG Flaring System 163
5.4.4 Comparison of open and enclosed flares 168
5.5 Case studies on LFG flaring systems 168
 5.5.1 Aleksandrovsk, Lugansk oblast, Ukraine 168
 5.5.2 Gorai landfill, Mumbai 172
 5.5.3 San Pedro, Manila 174
5.6 LFG cleaning and upgradation 175
5.7 Types of LFG treatment technologies 179
5.8 Water scrubbing using DMT technology 179
5.9 Water Scrubber using GmBH technology 182
5.10 Water Scrubbing using ISET technology 182
5.11 Physical Absorption using ISET technology 183
5.12 Pressure Swing Adsorption using DMT technology 184
5.13 Pressure Swing Adsorption using ISET technology 186
5.14 Pressure Swing Adsorption using GmBH technology 187
5.15 Chemical absorption of CO₂ 188
5.16 Chemical absorption using DMT technology 189
5.17 Chemical absorption using ISET technology 190
5.18 Chemical absorption using GmBH technology 191
5.19 Membrane separation Natcogroup technology 192
5.20 Membrane separation ISET technology 194
5.21 Cryogenic separation 196
5.22 Cryogenic condensation technology 197
5.23 Mixed Refrigerant liquefaction technology 198
5.24 SAGTM technology 199
5.25 SWOP™ technology 201
5.26 ISET technology 202
5.27 Comparison of different LFG treatment and upgrading technologies 203
 5.27.1 Impact on the environment 205
 5.27.2 Ease of operation 205
5.28 Conclusion 205
References 206

6 Landfill gas utilization technologies 209

 6.1 Introduction 209
 6.2 LFG to energy technologies 210
 6.3 Microturbines 211
 6.4 Reciprocating internal-combustion engines 214
 6.5 Stirling cycle engines 216
 6.6 Steam turbines 218
 6.7 Direct use 219
 6.8 Alternative fuels 221
 6.8.1 High Btu LFG 221
 6.8.2 LFG to Compressed Natural Gas 221
 6.8.3 LFG to Liquefied Natural Gas 223
 6.8.4 Application of LFG as a vehicle fuel 229
 6.8.5 LFG/LNG issues 231
6.9 Power generation using LFG-driven engines
- **6.9.1 Design considerations**
- **6.9.2 LFG power potential**
- **6.9.3 Electricity generation using internal combustion engines**
- **6.9.4 Electricity generation using large turbines**
- **6.9.5 Electricity generation using microturbines**
- **6.9.6 Organic rankine cycle power plant**

- **6.10 Boilers**
 - **6.10.1 LFG utilization for boilers**
 - **6.10.2 Design modifications**

- **6.11 Fuel cells**

- **References**

7 Remediation of landfill sites

7.1 Introduction

7.2 Planning for landfill remediation

7.3 Multiple uses of landfills

7.4 Recovery of landfills for higher land uses

7.5 Procedure for remediation of landfill sites with low LFG potential
 - **7.5.1 Site characterization study**
 - **7.5.2 Potential economic benefits**
 - **7.5.3 Investigate Regulatory requirements**
 - **7.5.4 Health and safety plan**
 - **7.5.5 Project costs**

7.6 Recovering land through waste mining and processing
 - **7.6.1 Landfill mining process**
 - **7.6.2 Excavation and separation**
 - **7.6.3 Processing for reclamation of recyclable material**
 - **7.6.4 Material recovery**
 - **7.6.5 Composition of waste**
 - **7.6.6 Waste recovery efficiency**
 - **7.6.7 Potential for energy recovery**
 - **7.6.8 Benefits of landfill mining**
 - **7.6.9 Limitations of landfill mining**
 - **7.6.10 Economic aspects of landfill mining**
 - **7.6.11 Cost and benefits of landfill mining**

7.7 Landfill mining case study
 - **7.7.1 Closing the circle project**
 - **7.7.2 Characterisation of landfilled waste**
 - **7.7.3 Material Recovery**
 - **7.7.4 Energy recuperation**
 - **7.7.5 Recovery of natural land**
 - **7.7.6 Carbon footprint**

7.8 Identification and control of landfill fires
 - **7.8.1 Characterization of landfill fire**
 - **7.8.2 Immediate actions**
 - **7.8.3 Extinguishment methods**

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8.4 Monitoring and management</td>
<td>275</td>
</tr>
<tr>
<td>7.8.5 Fire prevention and control plan</td>
<td>276</td>
</tr>
<tr>
<td>7.9 Operation and maintenance of landfill site</td>
<td>278</td>
</tr>
<tr>
<td>7.9.1 LFG monitoring system</td>
<td>280</td>
</tr>
<tr>
<td>7.9.2 LFG wellfield, conveyance, and condensate systems</td>
<td>281</td>
</tr>
<tr>
<td>7.9.3 LFG blower systems</td>
<td>282</td>
</tr>
<tr>
<td>7.9.4 LFG flare system</td>
<td>283</td>
</tr>
<tr>
<td>7.9.5 LFG energy recovery systems</td>
<td>284</td>
</tr>
</tbody>
</table>

References: 284

8 Landfill gas case studies: 285

8.1 Introduction: 285
8.2 Suzhou Qizi Mountain LFG to energy project, China: 286
8.3 Târgu Mures, LFG to energy project, Romania: 286
8.4 Wingmoor, LFG to energy project, UK: 287
8.5 McKinney LFG to energy project, Texas, USA: 287
8.6 Lubna, Sosnowiec and Legajny LFG to energy project, Poland: 288
8.7 Palembang LFG to energy project, Indonesia: 288
8.8 Monterey Regional Waste Management District LFG to energy project, Marina, CA: 288
8.9 La Pradera LFG to energy project, Colombia: 289
8.10 Bandeirantes LFG to energy project, Brazil: 289
8.11 Dunsink LFG to energy project, North Dublin: 290
8.12 LFG to energy project, Niagara: 290
8.13 McRobies Gully LFG to energy project, Tasmania: 290
8.14 City of Bergen LFG to energy project, Norway: 291
8.15 Nova Gerar LFG to energy project, Brazil: 292
8.16 Ethekwini LFG to energy project, Durban: 293
8.17 Horotiu, Hamilton LFG to energy project, New Zealand: 293
8.18 Arthurstown LFG to energy project, Ireland: 294
8.19 Ano Liossia LFG to energy project, Greece: 294
8.20 Puente Hills LFG to energy project, California: 295
8.21 Greater Sudbury and Halton Region, LFG to energy project, Canada: 295
8.22 Chelyabinsk LFG to energy project, Russia: 296
8.23 Torun LFG to energy project, Poland: 296
8.24 Kristianstad LFG to energy project, Sweden: 297
8.25 Belrose LFG to energy project, Australia: 298
8.26 Zámbiza LFG to energy project, Ecuador: 298
8.27 Vlierzele LFG to energy project, Belgium: 299
8.28 Antioch LFG to energy project, Illinois: 300
8.29 Chengdu City LFG to energy project, China: 301
8.30 Gaqantun LFG to energy project, China: 302
8.31 Mentougou LFG to energy project, China: 304
8.32 Gorai LFG to energy project, India: 305
8.33 Khmelnitsky LFG to energy project, Ukraine: 306
8.34 Belo Horizonte LFG to energy project, Brazil: 308