1. Introduction to Offshore Structures

1.1 Introduction 1
1.2 History of Offshore Structures 1
1.3 Overview of Field Development 2
 1.3.1 Field-Development Cost 4
 1.3.2 Multicriteria Concept Selection 8
1.4 Feed Requirements 9
1.5 Types of Offshore Platforms 10
1.6 Different Types of Offshore Structures 14
1.7 Minimal Offshore Structure 19
1.8 Preview of This Book 20
Bibliography 21

2. Offshore Structure Loads and Strength

2.1 Introduction 23
2.2 Gravity Loads 23
 2.2.1 Dead Load 23
 2.2.2 Live Load 26
 2.2.3 Impact Load 29
 2.2.4 Design for Serviceability Limit State 29
 2.2.5 Helicopter Landing Loads 31
 2.2.6 Crane Support Structures 38
2.3 Wind Load 42
2.4 Stair Design 46
 2.4.1 Gravity Loads 46
 2.4.2 Wind Loads 47
2.5 Offshore Loads 47
 2.5.1 Wave Load 48
 2.5.2 Current Force 55
 2.5.3 Earthquake Load 60
 2.5.4 Ice Loads 65
 2.5.5 Other Loads 66
2.6 Design for Ultimate Limit State (ULS) 67
 2.6.1 Load Factors 67
3. Offshore Structure Platform Design

3.1 Introduction 93
3.2 Preliminary Dimensions 101
 3.2.1 Approximate Dimensions 101
3.3 Bracing System 102
3.4 Jacket Design 104
3.5 Structure Analysis 107
 3.5.1 Global Structure Analysis 108
 3.5.2 The Loads on Piles 112
 3.5.3 Modeling Techniques 113
 3.5.4 Dynamic Structure Analysis 118
 3.5.5 In-place Analysis According to ISO 19902 123
3.6 Cylinder Member Strength 124
 3.6.1 Cylinder Member Strength Calculation According to ISO 19902 124
 3.6.2 Cylinder Member Strength Calculation 134
3.7 Tubular Joint Design 142
 3.7.1 Simple Joint Calculation API RP2A (2007) 143
 3.7.2 Joint Calculation According to API RP2A (2000) 153
 3.7.3 Fatigue Analysis 156
3.8 Topside Design 174
 3.8.1 Grating Design 175
 3.8.2 Handrails, Walkways, Stairways and Ladders 179
3.9 Boat Landing Design 180
 3.9.1 Boat Landing Calculation 182
 3.9.2 Riser Guard Design 185
 3.9.3 Boat Landing Design Using the Nonlinear Analysis Method 186
 3.9.4 Boat Impact Methods 187
 3.9.5 Tubular Member Denting Analysis 188
3.10 Riser Guard 192
3.11 On-Bottom Stability 193
3.12 Bridges 196
3.13 Crane Loads 197
3.14 Lift Installation Loads 197
3.15 Vortex-Induced Vibrations 199
4. Geotechnical Data and Pile Design

4.1 Introduction 213
4.2 Investigation Procedure 213
 4.2.1 Performing an Offshore Investigation 214
 4.2.2 Drilling Equipment and Method 215
 4.2.3 Wire-Line Sampling Technique 215
 4.2.4 Offshore Soil Investigation Problems 216
4.3 Soil Tests 218
4.4 In-Situ Testing 221
 4.4.1 Cone Penetration Test (CPT) 223
 4.4.2 Field Vane Test 229
4.5 Soil Properties 231
 4.5.1 Strength 233
 4.5.2 Soil Characterization 236
4.6 Pile Foundations 237
 4.6.1 Pile Capacity for Axial Loads 239
 4.6.2 Foundation Size 244
 4.6.3 Axial Pile Performance 245
 4.6.4 Pile Capacity Calculation Methods 260
 4.6.5 Pile Capacity under Cyclic Loadings 266
4.7 Scour 269
4.8 Pile Wall Thickness 271
 4.8.1 Design Pile Stresses 272
 4.8.2 Stresses Due to Hammer Effect 272
 4.8.3 Minimum Wall Thickness 275
 4.8.4 Driving Shoe and Head 276
 4.8.5 Pile Section Lengths 277
4.9 Pile Drivability Analysis 278
 4.9.1 Evaluation of Soil Resistance to Driving (SRD) 278
 4.9.2 Unit Shaft Resistance and Unit End Bearing for Uncemented Materials 279
 4.9.3 Upper- and Lower-Bound SRD 279
 4.9.4 Results of Wave Equation Analyses 281
 4.9.5 Results of Drivability Calculations 281
 4.9.6 Recommendations for Pile Installation 281
4.10 Soil Investigation Report 284
Bibliography 287

5. Fabrication and Installation

5.1 Introduction 293
5.2 Construction Procedure 293
5.3 Engineering of Execution 295
6. Corrosion Protection

6.1 Introduction
6.1.1 Corrosion in Seawater
6.1.2 Corrosion of Steel in Seawater
6.1.3 Choice of System Type
6.1.4 Geometric Shape

6.2 Coatings and Corrosion Protection of Steel Structures
6.3 Corrosion Stresses Due to the Atmosphere, Water and Soil
6.3.1 Classification of Environments
6.3.2 Mechanical, Temperature and Combined Stresses

6.4 Cathodic Protection Design Considerations
6.4.1 Environmental Parameters
6.4.2 Design Criteria
6.4.3 Protective Potentials
6.4.4 Negative Impact of CP on the Structure Jacket
6.4.5 Galvanic Anode Materials Performance
6.4.6 CP Design Parameters
6.4.7 Design Calculation for CP System
7. Assessment of Existing Structures and Repairs

7.1 Introduction

7.2 API RP2A: Historical Background
7.2.1 Environmental Loading Provisions
7.2.2 Regional Environmental DesignParameters
7.2.3 Member Resistance Calculation
7.2.4 Joint Strength Calculation
7.2.5 Fatigue
7.2.6 Pile Foundation Design

7.3 Den/HSE Guidance Notes for Fixed Offshore Design
7.3.1 Environmental Loading Provisions
7.3.2 Joint Strength Equations
7.3.3 Fatigue
7.3.4 Foundations
7.3.5 Definition of Design Condition
7.3.6 Currents
7.3.7 Wind
7.3.8 Waves
7.3.9 Deck Air Gap
7.3.10 Historical Review of Major North Sea Incidents

7.4 Historical Assessment of Environmental Loading Design Practice
7.4.1 Environmental Parameters for Structure Design
7.4.2 Fluid Loading Analysis

7.5 Development of API RP2A Member Resistance Equations

7.6 Allowable Stresses for Cylindrical Members
7.6.1 Axial Tension
7.6.2 Axial Compression
7.6.3 Bending
7.6.4 Shear
7.6.5 Hydrostatic Pressure
7.6.6 Combined Axial Tension and Bending
7.6.7 Combined Axial Compression and Bending
7.6.8 Combined Axial Tension and Hydrostatic Pressure
7.6.9 Combined Axial Compression and Hydrostatic Pressure
7.6.10 AISC Historical Background
7.6.11 Pile Design Historical Background
7.6.12 Effects of Changes in Tubular Member Design

7.7 Failure Due to Fire
7.7.1 Degree of Utilization
7.7.2 Tension Member Design by EC3
8.4.3 Routine Underwater Inspection Scope of Work
8.4.4 Inspection Plan Based on ISO 9000
8.4.5 Inspection and Repair Strategy
8.4.6 Flooded Member Inspection

8.5 Anode Retrofit Maintenance Program

8.6 Assessment Process
8.6.1 Collecting Data
8.6.2 Structure Assessment

8.7 Mitigation and Risk Reduction
8.7.1 Consequence Mitigation
8.7.2 Reduction of the Probability of Platform Failure

8.8 Occurrence of Member Failures with Time

Bibliography

Index