Stress corrosion cracking
Theory and practice

Edited by
V. S. Raja and Tetsuo Shoji

© Woodhead Publishing Limited, 2011
Contents

Contributor contact details xiii
List of reviewers xix
Foreword xxi
Preface xxiii

Part I Fundamental aspects of stress corrosion cracking (SCC) and hydrogen embrittlement 1

1 Mechanistic and fractographic aspects of stress-corrosion cracking (SCC) 3
 S. P. Lynch, Defence Science and Technology Organisation (DSTO), Australia
1.1 Introduction 3
1.2 Quantitative measures of stress-corrosion cracking (SCC) 5
1.3 Basic phenomenology of stress-corrosion cracking (SCC) 6
1.4 Metallurgical variables affecting stress-corrosion cracking (SCC) 11
1.5 Environmental variables affecting stress-corrosion cracking (SCC) 14
1.6 Surface-science observations 14
1.7 Proposed mechanisms of stress-corrosion cracking (SCC) 18
1.8 Determining the viability and applicability of stress-corrosion cracking (SCC) mechanisms 28
1.9 Transgranular stress-corrosion cracking (T-SCC) in model systems 29
1.10 Intergranular stress-corrosion cracking (I-SCC) in model systems 54
1.11 Stress-corrosion cracking (SCC) in some commercial alloys 58
1.12 General discussion of stress-corrosion cracking (SCC) mechanisms 66
1.13 Conclusions 76
2 Hydrogen embrittlement (HE) phenomena and mechanisms
S. P. Lynch, Defence Science and Technology Organisation (DSTO), Australia

2.1 Introduction
2.2 Proposed mechanisms of hydrogen embrittlement (HE) and supporting evidence
2.3 Relative contributions of various mechanisms for different fracture modes
2.4 General comments
2.5 Conclusions
2.6 References

Part II Test methods for determining stress corrosion cracking (SCC) susceptibilities

3 Testing and evaluation methods for stress corrosion cracking (SCC) in metals
W. Dietzel and P. Bala Srinivasan, Helmholtz-Zentrum Geesthacht, Germany and A. Atrens, The University of Queensland, Australia

3.1 Introduction
3.2 General aspects of stress corrosion cracking (SCC) testing
3.3 Smooth specimens
3.4 Pre-cracked specimens – the fracture mechanics approach to stress corrosion cracking (SCC)
3.5 The elastic-plastic fracture mechanics approach to stress corrosion cracking (SCC)
3.6 The use of stress corrosion cracking (SCC) data
3.7 Standards and procedures for stress corrosion cracking (SCC) testing
3.8 Future trends
3.9 References

Part III Stress corrosion cracking (SCC) in specific materials

4 Stress corrosion cracking (SCC) in low and medium strength carbon steels
U. K. Chatterjee, Indian Institute of Technology Kharagpur, India and R. K. Singh Raman, Monash University, Australia

4.1 Introduction
10.3 Stress corrosion cracking (SCC) of titanium alloys 386
10.4 Hydrogen degradation of titanium alloys 388
10.5 Conclusions 404
10.6 Acknowledgements 405
10.7 References 405

11 Stress corrosion cracking (SCC) of copper and copper-based alloys 409
M. Bobby Kannan, James Cook University, Australia and P. K. Shukla, Southwest Research Institute, USA

11.1 Introduction 409
11.2 Stress corrosion cracking (SCC) mechanisms 410
11.3 Stress corrosion cracking (SCC) of copper and copper-based alloys 411
11.4 Role of secondary phase particles 419
11.5 Stress corrosion cracking (SCC) mitigation strategies 419
11.6 Conclusions 422
11.7 References 424

12 Stress corrosion cracking (SCC) of austenitic stainless and ferritic steel weldments 427

12.1 Introduction 427
12.2 Effect of welding defects on weld metal corrosion 429
12.3 Stress corrosion cracking (SCC) of austenitic stainless steel weld metal 431
12.4 Welding issues in ferritic steels 462
12.5 Conclusions 478
12.6 References 478

13 Stress corrosion cracking (SCC) in polymer composites 485
J. K. Lim, Chonbuk National University, South Korea

13.1 Introduction 485
13.2 Stress corrosion cracking (SCC) of short fiber reinforced polymer injection moldings 487
13.3 Stress corrosion cracking (SCC) evaluation of glass fiber reinforced plastics (GFRPs) in synthetic sea water 505
13.4 Fatigue crack propagation mechanism of glass fiber reinforced plastics (GFRP) in synthetic sea water 511
13.5 Aging crack propagation mechanisms of natural fiber reinforced polymer composites 519
13.6 Aging of biodegradable composites based on natural fiber and polylactic acid (PLA) 526
13.7 References 535

Part IV Environmentally assisted cracking problems in various industries 537

14 Stress corrosion cracking (SCC) in boilers and cooling water systems 539
M. J. ESMACHER, GE Water & Process Technologies, USA
14.1 Overview of stress corrosion cracking (SCC) in water systems 539
14.2 Stress corrosion cracking (SCC) in boiler water systems 540
14.3 Stress corrosion cracking (SCC) in cooling water systems 552
14.4 Stress corrosion cracking (SCC) monitoring strategies 566
14.5 References 567

15 Environmentally assisted cracking (EAC) in oil and gas production 570
M. IANNUZZI, Det Norske Veritas, Norway
15.1 Introduction 570
15.2 Overview of oil and gas production 571
15.3 Environmentally assisted cracking (EAC) mechanisms common to oil and gas production 580
15.4 Materials for casing, tubing and other well components 584
15.5 Corrosivity of sour high pressure/high temperature (HPHT) reservoirs 592
15.6 Environmentally assisted cracking (EAC) performance of typical alloys for tubing and casing 594
15.7 Qualification of materials for oil- and gas-field applications 599
15.8 The future of materials selection for oil and gas production 603
15.9 References 604

16 Stress corrosion cracking (SCC) in aerospace vehicles 608
R. J. H. WANHILL, National Aerospace Laboratory NLR, The Netherlands and R. T. BYRNES and C. L. SMITH, Defence Science and Technology Organisation (DSTO), Australia
16.1 Introduction 608
16.2 Structures, materials and environments 610
16.3 Material–environment compatibility guidelines 615
19.3 Factors contributing to stress corrosion cracking (SCC) in pipelines 754
19.4 CANMET studies of near-neutral pH stress corrosion cracking (SCC) 759
19.5 Prevention of stress corrosion cracking (SCC) failures 765
19.6 Conclusions 767
19.7 References 768

Index 772