Nanocoatings and ultra-thin films
Technologies and applications

Edited by
Abdel Salam Hamdy Makhlouf
and Ion Tiginyanu
Contents

2.4 Metal/semiconductor nanoparticles 41
2.5 2-D arrays of colloidal spheres 44
2.6 Conclusions 48
2.7 Acknowledgements 48
2.8 References 48

3 Chemical and physical vapor deposition methods for nanocoatings 57
I. V. Shishkovsky, P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Russia
3.1 Substrate preparation for ultra-thin films and functional graded nanocoatings 57
3.2 Paradigm of functional graded layer-by-layer coating fabrication 60
3.3 Nanocoating fabrication methods 61
3.4 Physical vapor deposition-based technologies 63
3.5 Chemical vapor deposition-based technologies 71
3.6 Conclusion and future trends 74
3.7 References 75

4 Surface-initiated polymerisation for nanocoatings 78
V. Haradagiu, L. Sacarescu, A. Farcas, M. Pinteala and M. Butnaru, 'Petru Poni' Institute of Macromolecular Chemistry, Romania
4.1 Introduction 78
4.2 Physisorption and chemisorption, equilibrium and irreversible adsorption 79
4.3 Preparation of surface-bound polymer layers 87
4.4 Properties and applications 110
4.5 Acknowledgement 112
4.6 References 112

5 Methods for analysing nanocoatings and ultra-thin films 131
D. M. Bastidas, M. Criado and J.-M. Bastidas, National Centre for Metallurgical Research (CENIM), CSIC, Spain
5.1 Introduction 131
5.2 Electrochemical methods 132
5.3 Surface-sensitive analytical methods for ultra-thin film coatings 140
5.4 Spectroscopic, microscopic and acoustic techniques for ultra-thin film coatings 145

© Woodhead Publishing Limited, 2011
Contents

5.5 Conclusions
5.6 Acknowledgements
5.7 References

Part II Applications

6 Conventional and advanced coatings for industrial applications: an overview
A. S. H. MAKHLOUF, Max Planck Institute of Colloids and Interfaces, Germany
6.1 Introduction
6.2 Conventional coating technologies for the automotive and aerospace industries
6.3 Advanced coating technologies for the automotive and aerospace industries
6.4 Packaging applications
6.5 Coatings for the electronics and sensors industry
6.6 Paints and enamels industry
6.7 Biomedical implants industry
6.8 Acknowledgements
6.9 References

7 Nanocoatings for architectural glass
J. MOHELNIKOVA, Brno University of Technology, Czech Republic
7.1 Introduction
7.2 Spectrally selective glass
7.3 Dynamic smart glazings
7.4 Glass surface protections
7.5 Conclusion
7.6 Acknowledgements
7.7 References

8 Nanocoatings and ultra-thin films for packaging applications
A. SORRENTINO, University of Salerno, Italy
8.1 Introduction
8.2 Nanomaterials in packaging
8.3 High barrier packaging
8.4 Anti-microbial packaging
8.5 Nanosensors in packaging
8.6 Packaging as a drug carrier and for drug delivery
8.7 Nanotechnology solutions for the packaging waste problem

© Woodhead Publishing Limited, 2011
Contents

8.8 Anti-static packaging applications 220
8.9 Regulation and ethical issues in the new packaging industry 221
8.10 Future trends 222
8.11 References 223

9 Advanced protective coatings for aeronautical applications 235
M. G. S. Ferreira, M. L. Zheludkevich and J. Tedim, University of Aveiro, Portugal
9.1 Introduction: corrosion in aeronautical structures 235
9.2 Types of corrosion in aircraft 236
9.3 Factors influencing corrosion 241
9.4 Corrosion of aluminum and its alloys 243
9.5 Corrosion of magnesium alloys 244
9.6 Protective coatings in aerospace engineering 246
9.7 Pre-treatments 247
9.8 Anodizing coatings 253
9.9 Functional nanocoatings in aerospace engineering 258
9.10 Nanocoatings for detection of corrosion and mechanical damage 259
9.11 Self-healing coatings: nanostructured coatings with triggered responses for corrosion protection 261
9.12 Application of nanomaterials for protection of aeronautical structures 266
9.13 Conclusion and future trends 270
9.14 References 270

10 Nanoimprint lithographic (NIL) techniques for electronics applications 280
I. Tiginyanu, V. Ursaki and V. Popa, Academy of Sciences of Moldova, Republic of Moldova
10.1 Lithography techniques and nanoimprint lithography (NIL) fundamentals 280
10.2 Thermoplastic and laser-assisted NIL 286
10.3 Photo-assisted nanoimprinting 291
10.4 Soft NIL 297
10.5 Extensions of soft NIL 301
10.6 Scanning probe lithography (SPL) 307
10.7 Edge lithography 309
10.8 NIL for three-dimensional (3D) patterning 311
10.9 Combined nanoimprint approaches 315
10.10 Applications 317
10.11 Conclusions 320

© Woodhead Publishing Limited, 2011