Part I Design and production techniques for hygiene textiles

1 The design of novel hygiene textile products 3
M. JASSAL, Indian Institute of Technology (IIT), India

1.1 Introduction: hygiene products 3
1.2 Applications of hygiene products 3
1.3 Key property requirements of hygiene products 4
1.4 Types of new technology to improve the performance of hygiene products 5
1.5 References 10

2 Nanotechnology and its application to medical hygiene textiles 14
F. SARTAIN, A. READER, M. FISHER, B. PARK, M. KEMP
and J. JOHNSTONE, NanoKTN, UK and B. J. MCCARTHY, TechniTex Faraday
Limited, UK

2.1 Introduction 14
2.2 Healthcare and life sciences 15
2.3 Standards and regulations for nanotechnology products 18
2.4 The global textiles and clothing sectors 19
2.5 References 25
Contents

Use of knitted spacer fabrics for hygiene applications

A. M. Davies, De Montfort University, UK

- **3.1 Introduction: key issues in hygiene and moisture management**
- **3.2 Three-dimensional fabrics: an overview**
- **3.3 Principles of knitting spacer fabrics**
- **3.4 Application of knitted spacer fabrics in hygiene products**
- **3.5 Future trends**
- **3.6 References**

Innovative and sustainable packaging strategies for hygiene products

S. Lam Po Tang, TechniTex Faraday Limited, UK

- **4.1 Introduction**
- **4.2 Key considerations and drivers for the packaging of hygiene products**
- **4.3 Growing trends and innovation strategies**
- **4.4 Future trends for the hygiene industry**
- **4.5 Sources of further information and advice**
- **4.6 References**

Biodegradable hygiene products

M. Benedetti, W.I.P. Spa, Italy

- **5.1 Introduction**
- **5.2 A classification of sustainable materials according to their ecological footprint**
- **5.3 Criteria for the selection and implementation of sustainable alternative raw materials**
- **5.4 Alternative raw materials**
- **5.5 Conclusion**

Part II Design and production techniques for infection-control textiles

Micro-organisms, infection and the role of textiles

R. James, University of Nottingham, UK

- **6.1 Introduction to infections**
- **6.2 Superbugs and healthcare-associated infections**

© Woodhead Publishing Limited, 2011
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Principles of infection prevention and control in hospitals</td>
<td>94</td>
</tr>
<tr>
<td>6.4</td>
<td>The role of textiles in infection prevention and control</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Future trends</td>
<td>98</td>
</tr>
<tr>
<td>6.6</td>
<td>A holistic approach to preventing infections</td>
<td>100</td>
</tr>
<tr>
<td>6.7</td>
<td>Sources of further information and advice</td>
<td>101</td>
</tr>
<tr>
<td>6.8</td>
<td>References</td>
<td>101</td>
</tr>
<tr>
<td>7</td>
<td>Creating barrier textiles through plasma processing</td>
<td>104</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>7.2</td>
<td>The importance of liquid repellency</td>
<td>105</td>
</tr>
<tr>
<td>7.3</td>
<td>Current solutions for rendering barrier textiles liquid repellent</td>
<td>109</td>
</tr>
<tr>
<td>7.4</td>
<td>Use of plasmas for imparting liquid repellency to barrier textiles</td>
<td>111</td>
</tr>
<tr>
<td>7.5</td>
<td>Applications for plasma-processed barrier textiles</td>
<td>115</td>
</tr>
<tr>
<td>7.6</td>
<td>Future trends</td>
<td>123</td>
</tr>
<tr>
<td>7.7</td>
<td>Sources of further information and advice</td>
<td>123</td>
</tr>
<tr>
<td>7.8</td>
<td>References</td>
<td>124</td>
</tr>
<tr>
<td>8</td>
<td>Disposable and reusable medical textiles</td>
<td>125</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction: disposable versus reusable</td>
<td>125</td>
</tr>
<tr>
<td>8.2</td>
<td>Life cycles of disposable and reusable textiles</td>
<td>126</td>
</tr>
<tr>
<td>8.3</td>
<td>Costs of disposable and reusable textiles</td>
<td>128</td>
</tr>
<tr>
<td>8.4</td>
<td>Protection provided by disposable and reusable materials</td>
<td>130</td>
</tr>
<tr>
<td>8.5</td>
<td>Biocidal woven and nonwoven textiles</td>
<td>131</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusions</td>
<td>133</td>
</tr>
<tr>
<td>8.7</td>
<td>Acknowledgment</td>
<td>133</td>
</tr>
<tr>
<td>8.8</td>
<td>References</td>
<td>133</td>
</tr>
<tr>
<td>9</td>
<td>Ensuring fabrics survive sterilisation</td>
<td>136</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>136</td>
</tr>
<tr>
<td>9.2</td>
<td>Purpose and importance of sterilisation</td>
<td>137</td>
</tr>
<tr>
<td>9.3</td>
<td>Quality assurance of the sterilising process</td>
<td>143</td>
</tr>
<tr>
<td>9.4</td>
<td>Effect of sterilisation on fibres and fabrics</td>
<td>144</td>
</tr>
<tr>
<td>9.5</td>
<td>Reprocessing sterilised products</td>
<td>145</td>
</tr>
</tbody>
</table>
Contents

9.6 Normalisation 147
9.7 Conclusions 148
9.8 References 148

Part III Product types

10 Washable textile-based absorbent products for incontinence 153
A. M. COTTENDEN, R. SANTAMARTA VILELA, M. C. MACAULAY,
D. J. COTTENDEN, M. A. LANDERYOU and D. LILBURN, University
College London, UK and M. J. FADER, University of Southampton, UK

10.1 Introduction 153
10.2 Incontinence pad designs 155
10.3 Functional requirements of washable, textile-based incontinence products 155
10.4 Clinical performance of existing products 157
10.5 Laboratory evaluation 161
10.6 Correlation with user data 168
10.7 Future trends 170
10.8 Sources of further information and advice 171
10.9 References 171

11 Biological containment suits used in microbiological high containment facilities and by emergency responders 173
J. T. WALKER, K. GIRI, T. POTTAGE, S. PARKS, A. DAVIES and
A. M. BENNETT, HPA, UK and C. LECULIER and H. RAOUl,
Laboratoire P4 INSERM Jean Mérieux, France

11.1 Introduction 173
11.2 Containment fabrics to protect against biological threats 174
11.3 Conclusions 183
11.4 References 183

12 Coated textiles for skin infections 186
G. SENTI, A. U. FREIBURGHAUSE and T. M. KÖNDIG, Centre for
Clinical Research, University Hospital of Zurich, Switzerland

12.1 Introduction: textiles, skin and infections 186
12.2 Types of coated textiles with anti-infectious properties 187