Minerals, Metals and Sustainability

Meeting Future Material Needs

W.J. Rankin, CSIRO

CSIRO PUBLISHING

CRC
# Contents

Preface xv
Acknowledgements xvii

1 Introduction 1

2 Materials and the materials cycle 5

2.1 Natural resources 5
2.2 Materials, goods and services 6
2.3 The material groups 9

2.3.1 Biomass 9
2.3.2 Plastics 10
2.3.3 Metals and alloys 10
2.3.4 Silicates and other inorganic compounds 10

2.4 The materials cycle 12
2.5 The recyclability of materials 14
2.6 Quantifying the materials cycle 15

2.6.1 Materials and energy balances 16
2.6.2 Material flow analysis 16

2.7 References 23
2.8 Useful sources of information 24

3 An introduction to Earth 25

3.1 The crust 25
3.2 The hydrosphere and biosphere 26

3.2.1 Life on Earth 27
3.2.2 The Earth’s biomes 28
3.2.3 Ecosystem services 30

3.3 Some implications of the basic laws of science 31

3.3.1 Thermal energy flows to the biosphere and hydrosphere 32
3.3.2 The greenhouse effect 32
3.3.3 The Sun as driver of both change and order 33

3.4 The biogeochemical cycles 34

3.4.1 The carbon and oxygen cycles 35
3.4.2 The water cycle 36
3.4.3 The nitrogen cycle 37
3.4.4 The phosphorus cycle 38
4 An introduction to sustainability

4.1 The environmental context
4.1.1 The state of the environment
4.1.2 The ecological footprint
4.1.3 The tragedy of the commons

4.2 A brief history of the idea of sustainability
4.2.1 The rising public awareness
4.2.2 International developments
4.2.3 Corporate developments

4.3 The concepts of sustainable development and sustainability
4.3.1 Alternative definitions of sustainability
4.3.2 Interpretations of sustainability
4.3.3 Responses to the challenge of sustainability

4.4 Sustainability frameworks
4.4.1 Triple bottom line
4.4.2 Eco-efficiency
4.4.3 The Natural Step
4.4.4 Natural Capitalism
4.4.5 Biomimicry
4.4.6 The five capitals model
4.4.7 Green chemistry and green engineering
4.4.8 Putting the frameworks into context

4.5 A model of sustainability

4.6 References

4.7 Useful sources of information

5 Mineral resources

5.1 Formation of the Earth

5.2 The geological time scale

5.3 Formation of the crust
5.3.1 Continental crust
5.3.2 Oceanic crust
5.3.3 The distribution of elements

5.4 Minerals and rocks
5.4.1 Mineral classes
5.4.2 Rock classes
5.4.3 The rock cycle 81

5.5 Mineral deposits 82
5.5.1 Formation of mineral deposits 83
5.5.2 Common forms of mineral deposits 84
5.5.3 The distribution of base and precious metal deposits 85

5.6 Resources and reserves 86

5.7 Extracting value from the crust 89
5.7.1 Physical separation 90
5.7.2 Chemical separation 92
5.7.3 The effect of breakage on the surface area of materials 93
5.7.4 By-products and co-products 94
5.7.5 The efficiency of extraction 94

5.8 References 94

5.9 Useful sources of information 95

6 The minerals industry 97

6.1 Mineral commodities 97
6.1.1 Traded commodities 97
6.1.2 Mineral commodity statistics 100
6.1.3 Reserves and resources of mineral commodities 101

6.2 How mineral commodities are traded 105
6.2.1 Mineral and metal markets 105
6.2.2 The complexities of trading mineral commodities 107

6.3 The economic value of mineral commodities 109
6.3.1 Hotelling's rule 109
6.3.2 Limitations of Hotelling's rule 110

6.4 The mining project cycle 112
6.4.1 Exploration 113
6.4.2 Evaluation and development 113
6.4.3 Design, construction and commissioning 114
6.4.4 Production 114
6.4.5 Project decline and closure, remediation and restoration 114

6.5 The nature of the minerals industry 115
6.5.1 Location 115
6.5.2 Hazardous nature 115
6.5.3 Size and structure 116
6.5.4 Minerals companies 117
6.5.5 Industry associations 120
6.5.6 Industry culture 120
6.5.7 Trends shaping the industry 121
6.6 The economic and social impacts of mining
  6.6.1 Mining as a route to development
  6.6.2 The resources curse
  6.6.3 Artisanal and small-scale mining
6.7 The minerals industry and sustainable development
  6.7.1 Industry developments and formation of the ICMM
  6.7.2 Sustainability reporting and sustainability indicators
  6.7.3 Status of the industry
6.8 References
6.9 Useful sources of information

7 Producing ores and concentrates
  7.1 Extracting rock from the crust
    7.1.1 Surface mining
    7.1.2 Underground mining
    7.1.3 Solution mining
  7.2 Beneficiating mined material
    7.2.1 Size reduction
    7.2.2 Separating particles
    7.2.3 Separating solids from water
    7.2.4 Agglomerating particles
  7.3 Examples of mineral beneficiation flowsheets
    7.3.1 Mineral sand concentrates
    7.3.2 Production of iron ore fines and lump
    7.3.3 Base metal sulfide concentrates
  7.4 References
  7.5 Useful sources of information

8 Producing metals and manufactured mineral products
  8.1 Theoretical considerations
  8.2 Metals
    8.2.1 The principles of metal extraction
    8.2.2 Metallurgical reactors
    8.2.3 Smelting
    8.2.4 Leaching
    8.2.5 The stages in the extraction of a metal
    8.2.6 The production of some important metals
  8.3 Cement and concrete
  8.4 Glass
9 Energy consumption in primary production

9.1 Direct and indirect energy and gross energy requirement 189

9.2 Embodied energy 191
   9.2.1 Calculation of embodied energy 192
   9.2.2 Values of embodied energy 194

9.3 Embodied energy and global warming potential 196
   9.3.1 Hydrometallurgy versus pyrometallurgy 197
   9.3.2 Global greenhouse gas production 198
   9.3.3 Impact of the source of electricity used 198

9.4 The effect of declining ore grade and liberation size on energy consumption 198

9.5 The lower limits of energy consumption 200
   9.5.1 Energy required for moving materials 202
   9.5.2 Energy required for sorting and separating material 202
   9.5.3 Energy required for chemical processing 203

9.6 Energy sustainability indicators and reporting 205

9.7 References 210

10 The role of water in primary production

10.1 Global water resources 213

10.2 Water in the minerals industry 215

10.3 The embodied water content of metals 216

10.4 Water sustainability indicators and reporting 218

10.5 References 219

10.6 Useful sources of information 220

11 Wastes from primary production

11.1 Wastes and their origin 223

11.2 Solid wastes 225
   11.2.1 Calculation of the quantities of solid wastes 225
   11.2.2 Quantities produced 228

11.3 Liquid wastes 228
   11.3.1 Waste water 228
   11.3.2 Acid and metalliferous drainage 229

11.4 Gaseous wastes 232
13.5 Recovery, recycling and return rates for common materials 275
13.6 The energy required for recycling 275
  13.6.1 The Gross Energy Requirement for recycling 278
  13.6.2 The effect of repeated recycling 279
13.7 The effect of recycling on resource life 279
13.8 Recycling materials from simple products 281
  13.8.1 Construction and demolition wastes 281
  13.8.2 Glass 281
  13.8.3 Metals 282
13.9 Recycling materials from complex products 284
  13.9.1 Cars 284
  13.9.2 Waste electrical and electronic equipment 287
13.10 Design for the Environment 291
13.11 References 292
13.12 Useful sources of information 294

14 The future availability of minerals and metals 295
14.1 The determinants of long-term supply 295
14.2 Potential sources of minerals 296
14.3 Crustal resources
  14.3.1 The distribution of the elements in the crust 297
  14.3.2 The mineralogical barrier 297
  14.3.3 Hubbert's curve and the concept of peak minerals 299
  14.3.4 Are many mineral deposits still to be discovered? 300
  14.3.5 Crustal rocks as a source of scarce elements 304
14.4 Resources in seawater 305
14.5 Resources on the seabed
  14.5.1 Deposits originating from land sources 308
  14.5.2 Deposits originating from sources in ocean basins 310
  14.5.3 Deposits originating from sources on continents and in ocean basins 310
  14.5.4 Recovery and processing of deep ocean deposits 311
  14.5.5 Legal aspects: the Convention of the Sea 312
14.6 Summary and conclusions 313
14.7 References 313
14.8 Useful sources of information 314

15 The future demand for minerals and metals 315
15.1 The determinants of long-term demand 315
15.2 Projections of the demand for mineral commodities 316
15.3 Materials and technological substitution 318
  15.3.1 Substitution limits and constraints 321
15.4 Dematerialisation 322
  15.4.1 Intensity-of-use 322
  15.4.2 Drivers of dematerialisation 325
  15.4.3 Counters to dematerialisation 327
  15.4.4 A case study 328
15.5 The IPAT equation 329
15.6 Summary and conclusions 330
15.7 References 330
15.8 Useful sources of information 331

16 Towards zero waste 333
  16.1 The waste hierarchy 333
  16.2 Reducing and eliminating wastes 335
  16.3 Cleaner production 336
  16.4 Wastes as raw materials 337
  16.5 Waste reduction through process re-engineering 346
    16.5.1 Examples of flowsheet simplification 346
    16.5.2 Examples of novel equipment 348
    16.5.3 Examples of novel processing conditions 350
  16.6 Industrial ecology 352
  16.7 Making it happen 359
  16.8 References 363
  16.9 Useful sources of information 365

17 Towards sustainability 367
  17.1 Closing the materials cycle 367
    17.1.1 The ICCM stewardship model 368
    17.1.2 The Five Winds stewardship model 370
    17.1.3 An integrated strategy for the minerals and metals sector 371
    17.1.4 Drivers of stewardship 373
  17.2 Market- and policy-based approaches to transitioning to sustainability 374
  17.3 What does the future hold? 375
    17.3.1 The ‘Great Transition’ scenario 375
    17.3.2 The World Business Council for Sustainable Development scenario 378
  17.4 Summary and conclusions 379
  17.5 References 380
| Appendix I: A note on units and quantities                      | 383 |
| International System of Units                                | 383 |
| Scientific notation, significant figures and order of magnitude | 383 |
| Appendix II: A review of some important scientific concepts   | 387 |
| II.1 The nature of matter                                     | 387 |
| II.2 Conservation of matter                                   | 389 |
| II.3 Energy, heat and the laws of thermodynamics               | 389 |
| II.4 Electromagnetic radiation                                | 392 |
| II.5 Heat transfer                                            | 393 |
| Appendix III: GRI Sustainability Indicators                  | 395 |
| Appendix IV: Processing routes for extraction of common metals from their ores | 401 |
| Index                                                         | 407 |
| Elements arranged in alphabetical order                       | 420 |
| The Periodic Table                                           | 422 |