Di Zhang

Morphology Genetic Materials Templated from Nature Species

With 226 figures
Contents

1 Functional Materials Templated from Natural Plants .. 1
 1.1 Introduction .. 1
 1.2 Morphogenetic Materials from Natural Plants .. 2
 1.2.1 Synthesis of (Fe₂O₃), Nickel Oxide (NiO) and Zinc Oxide (ZnO) from Natural Plants ... 2
 1.2.2 Biomorphic Al₂O₃ and SnO₂ by Using Cotton as Bio-Templates 24
 1.2.3 Biomorphic Synthesis of Metal Oxide Doped with Metal (N-TiO₂, Ag-Al₂O₃) ... 27
 1.2.4 Biotemplate Fabrication of SnO₂ and TiO₂ Materials by a Sonochemical Method ... 31
 1.2.5 Biomorphic Functional Metal Oxides from Plant Leaves 37
 1.3 Applications of the Synthesized Biomorphic Materials 40
 1.3.1 Adsorbents for Copper Ions Removal with Surface Functionalized Soybean Straw ... 40
 1.3.2 Polymer Functionalized Activated Carbon (from Rice Husk) for Cu²⁺ Removal ... 42
 1.3.3 Magnetic Nanoparticles Functionalized Activated Carbon for Dye Removal ... 45
 1.3.4 TiO₂ with Hierarchical Structures Fabricated from Wood for Photocatalyst ... 47
 1.3.5 Gas Sensing Properties of Wood-Templated Oxides 48
 1.4 Summary .. 72
 References .. 72

2 Morph-Genetic Materials Inspired from Butterfly Wing Scales 75
 2.1 Introduction .. 75
 2.2 Synthesis Approaches of Butterfly Wings Replicas ... 77
 2.2.1 Chemical Solutions Soaking Method .. 77
 2.2.2 Sonochemical Processing Method .. 81
 2.2.3 Solvothermal Nano-Complex Processing Method 84
2.2.4 Summary

2.3 Optical Properties of Butterfly Wings, Hybrids or Replicas

2.3.1 Fabrication of Iridescent Zinc Oxide Replicas from Transparent Butterfly Wings Templates

2.3.2 Fabrication of Large-Area Iridescent Inorganic Replicas

2.3.3 Fabrication of Nanocomposite with Novel Optical Effect

2.4 Gas Sensor Properties of Butterfly Wings, Hybrids or Replicas

2.4.1 Characterization of the Porous Hierarchical Gas-Sensor Microstructures Template from Butterfly Wings

2.4.2 Research on the Gas-Sensor Properties of the SnO\textsubscript{2} Replicas of Butterfly Wings

2.5 High Light Harvest Efficiency Photoanode Used in Solar Cells

2.6 Conclusion

References

3 Morph-Genetic Materials Inspired Diverse Hierarchical Bio-Architectures

3.1 Introduction

3.2 Functional Metal Oxides Nano-Architectures with Eggshell Membrane Hierarchy

3.2.1 Biotemplating Sol-Gel Techniques for Hierarchical Metal Oxides

3.2.2 Hierarchical Nanostructured SnO\textsubscript{2} as Gas Sensors

3.2.3 Pd-PdO Nanoclusters Reinforced Hierarchical TiO\textsubscript{2} Films with Excellent Photocatalysis

3.3 Morph-Genetic Materials with Diatom as the Templates

3.4 Morph-Genetic Materials with Bacteria as the Templates

3.5 Hybrid Nanocomposites Derived from Reactive Natural Scaffolds

3.5.1 Natural Biofibers Based Hybrid Nanocomposites

3.5.2 Hierarchical Morph-Genetic Nanocomposites

3.5.3 Iridescent Nanocomposites: Novel Photonic Crystals

References

4 Morph-Genetic Composites

4.1 Morph-Genetic Composites Based on Plant Materials

4.1.1 Synthesis of Morph-Genetic Composites from Natural Plants

4.1.2 Properties of the Synthesized Biomorphic Materials

4.1.3 Summary

4.2 Functional Nanostructures/Bioscaffolds Nanocomposites

4.2.1 Natural Biofibers Based Optical Nanocomposites

4.2.2 Hybrid Nanocomposites with Natural Photonic Crystals as the Matrices

References

Index