Ductile Design of Steel Structures

Michel Bruneau, Ph.D., P.Eng.
Chia-Ming Uang, Ph.D.
Rafael Sabelli, S.E.

Second Edition
Contents

Preface .. xvii

1 Introduction 1
 References .. 6

2 Structural Steel 7
 2.1 Introduction 7
 2.2 Common Properties of Steel Materials 8
 2.2.1 Engineering Stress-Strain Curve 8
 2.2.2 Effect of Temperature on Stress-Strain Curve 10
 2.2.3 Effect of Temperature on Ductility and Notch-Toughness 15
 2.2.4 Strain Rate Effect on Tensile and Yield Strengths 22
 2.2.5 Probable Yield Strength 22
 2.3 Plasticity, Hysteresis, Bauschinger Effects 29
 2.4 Metallurgical Process of Yielding, Slip Planes 31
 2.5 Brittleness in Welded Sections 35
 2.5.1 Metallurgical Transformations During Welding, Heat-Affected Zone, Preheating 35
 2.5.2 Hydrogen Embrittlement 37
 2.5.3 Carbon Equivalent 40
 2.5.4 Flame Cutting 41
 2.5.5 Weld Restraints 41
 2.5.6 Lamellar Tearing 44
 2.5.7 Thick Steel Sections 47
 2.5.8 Fracture Mechanics 49
 2.5.9 Partial Penetration Welds 50
 2.5.10 K-Area Fractures 50
 2.5.11 Strain Aging 54
 2.5.12 Stress Corrosion 55
 2.5.13 Corrosion Fatigue 57
 2.5.14 Ductility of Corroded Steel 60
 2.6 Low-Cycle versus High-Cycle Fatigue 62
 2.6.1 High-Cycle Fatigue 62
 2.6.2 Low-Cycle Fatigue 62
2.7 Material Models ... 70
 2.7.1 Rigid Plastic Model 70
 2.7.2 Elasto-Plastic Models 70
 2.7.3 Power, Ramberg-Osgood, and Menegotto-Pinto Functions 72
 2.7.4 Smooth Hysteretic Models 80
2.8 Advantages of Plastic Material Behavior 94
2.9 Self-Study Problems 100

References .. 104

3 Plastic Behavior at the Cross-Section Level 111
 3.1 Pure Flexural Yielding 111
 3.1.1 Doubly Symmetric Sections 112
 3.1.2 Sections Having a Single Axis of Symmetry 117
 3.1.3 Impact of Some Factors on Inelastic Flexural Behavior 120
 3.1.4 Behavior During Cyclic Loading 127
 3.2 Combined Flexural and Axial Loading 129
 3.2.1 Rectangular Cross-Section 132
 3.2.2 Wide-Flange Sections: Strong-Axis Bending 132
 3.2.3 Wide-Flange Sections: Weak-Axis Bending 136
 3.2.4 Moment-Curvature Relationships 137
 3.3 Combined Flexural and Shear Loading 137
 3.4 Combined Flexural, Axial, and Shear Loading 142
 3.5 Pure Plastic Torsion: Sand-Heap Analogy 145
 3.5.1 Review of Important Elastic Analysis Results 145
 3.5.2 Sand-Heap Analogy 146
 3.6 Combined Flexure and Torsion 148
 3.7 Biaxial Flexure .. 150
 3.7.1 General Principles 150
 3.7.2 Fiber Models 158
 3.8 Composite Sections 160
 3.9 Self-Study Problems 163

References .. 173

4 Concepts of Plastic Analysis 175
 4.1 Introduction to Simple Plastic Analysis 175
 4.2 Simple Plastic Analysis Methods 178
 4.2.1 Event-to-Event Calculation (Step-by-Step Method) 178
4.2.2 Equilibrium Method
 (Statistical Method) 181
4.2.3 Kinematic Method
 (Virtual-Work Method) 186
4.3 Theorems of Simple Plastic Analysis 191
 4.3.1 Upper Bound Theorem 192
 4.3.2 Lower Bound Theorem 192
 4.3.3 Uniqueness Theorem 192
4.4 Application of the Kinematic Method 193
 4.4.1 Basic Mechanism Types 193
 4.4.2 Combined Mechanism 195
 4.4.3 Mechanism Analysis by Center of Rotation 202
 4.4.4 Distributed Loads 207
4.5 Shakedown Theorem
 (Deflection Stability) 215
4.6 Yield Lines 222
 4.6.1 General Framework 222
 4.6.2 Strength of Connections 229
 4.6.3 Plastic Mechanisms of Local Buckling 235
4.7 Self-Study Problems 238
References 247

5 Systematic Methods of Plastic Analysis 249
5.1 Number of Basic Mechanisms 249
5.2 Direct Combination of Mechanisms 253
 5.2.1 Example: One-Bay, One-Story Frame 253
 5.2.2 Example: Two-Story Frame with Overhanging Bay 256
5.3 Method of Inequalities 259
5.4 Self-Study Problems 266
References 272

6 Applications of Plastic Analysis 273
6.1 Moment Redistribution Design Methods 274
 6.1.1 Statical Method of Design 274
 6.1.2 Autostress Design Method 276
6.2 Capacity Design 279
 6.2.1 Concepts 279
 6.2.2 Shear Failure Protection 281
 6.2.3 Protection Against Column Hinging 284
4.2.2 Equilibrium Method
 (Statitical Method) 181
4.2.3 Kinematic Method
 (Virtual-Work Method) 186
4.3 Theorems of Simple Plastic Analysis 191
 4.3.1 Upper Bound Theorem 192
 4.3.2 Lower Bound Theorem 192
 4.3.3 Uniqueness Theorem 192
4.4 Application of the Kinematic Method 193
 4.4.1 Basic Mechanism Types 193
 4.4.2 Combined Mechanism 195
 4.4.3 Mechanism Analysis by
 Center of Rotation 202
 4.4.4 Distributed Loads 207
4.5 Shakedown Theorem
 (Deflection Stability) 215
4.6 Yield Lines 222
 4.6.1 General Framework 222
 4.6.2 Strength of Connections 229
 4.6.3 Plastic Mechanisms of
 Local Buckling 235
4.7 Self-Study Problems 238
References 247

5 Systematic Methods of Plastic Analysis 249
 5.1 Number of Basic Mechanisms 249
 5.2 Direct Combination of Mechanisms 253
 5.2.1 Example: One-Bay, One-Story
 Frame 253
 5.2.2 Example: Two-Story Frame with
 Overhanging Bay 256
 5.3 Method of Inequalities 259
 5.4 Self-Study Problems 266
References 272

6 Applications of Plastic Analysis 273
 6.1 Moment Redistribution Design Methods 274
 6.1.1 Statical Method of Design 274
 6.1.2 Autostress Design Method 276
 6.2 Capacity Design 279
 6.2.1 Concepts 279
 6.2.2 Shear Failure Protection 281
 6.2.3 Protection Against Column
 Hinging 284
Contents

6.3 Push-Over Analysis .. 285
 6.3.1 Monotonic Push-Over Analysis 287
 6.3.2 Cyclic Push-Over Analysis 294
6.4 Seismic Design Using Plastic Analysis 295
6.5 Global versus Local Ductility Demands 296
 6.5.1 Displacement Ductility versus
 Curvature Ductility 296
 6.5.2 Ductility of Yielding Link for
 Structural Element in Series 300
6.6 Displacement Compatibility of
 Nonductile Systems 302
6.7 Self-Study Problems 303

References .. 307

7 Building Code Seismic Design Philosophy 309
 7.1 Introduction 309
 7.2 Need for Ductility in Seismic Design 309
 7.2.1 Elastic Response and Response
 Spectrum 310
 7.2.2 Inelastic Response and Ductility
 Reduction 312
 7.3 Collapse Mechanism versus
 Yield Mechanism 315
 7.4 Design Earthquake 316
 7.5 Equivalent Lateral Force Procedure 318
 7.6 Physical Meaning of Seismic
 Performance Factors 320
 7.7 Capacity Design 322
 7.7.1 Global-Level Approach 323
 7.7.2 Local-Level Approach 324
 7.8 Performance-Based Seismic Design
 Framework 327
 7.8.1 Seismic Performance Objective 327
 7.8.2 USA: ASCE 7 328
 7.8.3 Canada: NBCC 329
 7.8.4 Japan: BSL 331
 7.8.5 Seismic Design of Tall Buildings ... 333
 7.8.6 Next-Generation Performance-Based
 Seismic Design 335
 7.9 Historical Perspective of Seismic Codes ... 336

References .. 341

8 Design of Ductile Moment-Resisting Frames 345
 8.1 Introduction 345
 8.1.1 Historical Developments 346
8.1.2 General Behavior and Plastic Mechanism 347
8.1.3 Design Philosophy .. 347
8.2 Basic Response of Ductile Moment-Resisting Frames to Lateral Loads 348
 8.2.1 Internal Forces During Seismic Response 348
 8.2.2 Plastic Rotation Demands 350
 8.2.3 Lateral Bracing and Local Buckling 351
8.3 Ductile Moment-Frame Column Design 352
 8.3.1 Axial Forces in Columns 352
 8.3.2 Considerations for Column Splices 352
 8.3.3 Strong-Column/Weak-Beam Philosophy 353
 8.3.4 Effect of Axial Forces on Column Ductility 357
8.4 Panel Zone .. 358
 8.4.1 Flange Distortion and Column Web Yielding/Crippling Prevention 358
 8.4.2 Forces on Panel Zones 362
 8.4.3 Behavior of Panel Zones 364
 8.4.4 Modeling of Panel Zone Behavior 370
 8.4.5 Design of Panel Zone 374
8.5 Beam-to-Column Connections 377
 8.5.1 Knowledge and Practice Prior to the 1994 Northridge Earthquake 377
 8.5.2 Damage During the Northridge Earthquake 389
 8.5.3 Causes for Failures 401
 8.5.4 Reexamination of Pre-Northridge Practice 410
 8.5.5 Post-Northridge Beam-to-Column Connections Design Strategies for New Buildings—Initial Concepts 412
 8.5.6 Post-Northridge Beam-to-Column Prequalified Connections 432
 8.5.7 International Relevance 438
 8.5.8 Semi-Rigid (Partially Restrained) Bolted Connections 446
8.6 Design of a Ductile Moment Frame 450
 8.6.1 General Connection Design Issues 450
9.3 Hysteretic Behavior and Design of Concentrically Braced Frames

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1</td>
<td>System Configuration and General Issues</td>
<td>536</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Brace Design</td>
<td>542</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Beam Design</td>
<td>547</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Column Design</td>
<td>552</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Connection Design</td>
<td>556</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Other Issues</td>
<td>560</td>
</tr>
</tbody>
</table>

9.4 Other Concentric Braced-Frame Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1</td>
<td>Special Truss Moment Frames (STMF)</td>
<td>564</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Zipper Frames</td>
<td>565</td>
</tr>
</tbody>
</table>

9.5 Design Example

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.1</td>
<td>Building Description and Loading</td>
<td>566</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Global Requirements</td>
<td>567</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Basis of Design</td>
<td>568</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Preliminary Brace Sizing</td>
<td>570</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Plastic Mechanism Analysis</td>
<td>570</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Capacity Design of Beam</td>
<td>571</td>
</tr>
<tr>
<td>9.5.7</td>
<td>Capacity Design of Column</td>
<td>573</td>
</tr>
<tr>
<td>9.5.8</td>
<td>Iterative Analysis and Proportioning</td>
<td>575</td>
</tr>
<tr>
<td>9.5.9</td>
<td>Connection Design</td>
<td>575</td>
</tr>
<tr>
<td>9.5.10</td>
<td>Completion of Design</td>
<td>576</td>
</tr>
<tr>
<td>9.5.11</td>
<td>Additional Consideration: Gravity Bias in Seismic Systems</td>
<td>576</td>
</tr>
</tbody>
</table>

9.6 Self-Study Problems

References | 579 |

10 Design of Ductile Eccentrically Braced Frames

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>591</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Historical Development</td>
<td>591</td>
</tr>
<tr>
<td>10.1.2</td>
<td>General Behavior and Plastic Mechanism</td>
<td>592</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Design Philosophy</td>
<td>593</td>
</tr>
<tr>
<td>10.2</td>
<td>Link Behavior</td>
<td>594</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Stiffened and Unstiffened Links</td>
<td>594</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Critical Length for Shear Yielding</td>
<td>595</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Classifications of Links and Link Deformation Capacity</td>
<td>597</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Link Transverse Stiffener</td>
<td>598</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Effect of Axial Force</td>
<td>601</td>
</tr>
</tbody>
</table>
10.2.6 Effect of Concrete Slab 602
10.2.7 Link Overstrength 602
10.2.8 Qualification Test and Loading Protocol Effect 603

10.3 EBF Lateral Stiffness and Strength 604
10.3.1 Elastic Stiffness 604
10.3.2 Link Required Rotation 604
10.3.3 Plastic Analysis and Ultimate Frame Strength 606

10.4 Ductility Design 609
10.4.1 Sizing of Links 609
10.4.2 Link Detailing 609
10.4.3 Lateral Bracing of Link 614

10.5 Capacity Design of Other Structural Components 615
10.5.1 General 615
10.5.2 Internal Force Distribution 616
10.5.3 Diagonal Braces 618
10.5.4 Beams Outside of Link 619
10.5.5 Columns 620
10.5.6 Connections 620

10.6 Design Example 625
10.6.1 Building Description and Loading 625
10.6.2 Global Requirements 626
10.6.3 Basis of Design 627
10.6.4 Sizing of Links 628
10.6.5 Final Link Design Check 638
10.6.6 Link Rotation 640
10.6.7 Link Detailing 641
10.6.8 Completion of Design 642

10.7 Self-Study Problems 643

References 646

11 Design of Ductile Buckling-Restrained Braced Frames 651
11.1 Introduction 651
11.2 Buckling-Restrained Braced Frames versus Conventional Frames 651
11.3 Concept and Components of Buckling-Restrained Brace 654
11.4 Development of BRBs 656
11.5 Nonductile Failure Modes 661
11.5.1 Steel Casing 661
11.5.2 Brace Connection 662
11.5.3 Frame Distortion Effect on Gusset Connection 666
11.6 BRBF Configuration ... 667
11.7 Design of Buckling-Restrained Braces 669
 11.7.1 Brace Design ... 669
 11.7.2 Elastic Modeling 669
 11.7.3 Gravity Loads ... 670
11.8 Capacity Design of BRBF 671
 11.8.1 AISC Testing Requirements 672
 11.8.2 Brace Casing ... 673
 11.8.3 Brace Connections 673
 11.8.4 Beams and Columns 674
11.9 Nonlinear Modeling ... 674
11.10 Design Example .. 675
 11.10.1 Building Description and Loading 675
 11.10.2 Global Requirements 675
 11.10.3 Basis of Design 675
 11.10.4 Iterative Analysis and Proportioning 678
 11.10.5 Brace Validation and Testing 684
 11.10.6 Completion of Design 686
11.11 Self-Study Problem .. 686
References .. 687

12 Design of Ductile Steel Plate Shear Walls 689
12.1 Introduction .. 689
 12.1.1 General Concepts .. 689
 12.1.2 Historical Developments 692
 12.1.3 International Implementations 699
12.2 Behavior of Steel Plate Shear Walls 703
 12.2.1 General Behavior .. 703
 12.2.2 Plastic Mechanism 706
 12.2.3 Design Philosophy and Hysteretic Energy Dissipation 710
12.3 Analysis and Modeling ... 712
 12.3.1 Strip Models .. 712
 12.3.2 Finite Element Models 715
 12.3.3 Demands on HBEs 715
 12.3.4 Demands on VBEs 728
12.4 Design .. 736
 12.4.1 Introduction ... 736
 12.4.2 Web Plate Design 737
 12.4.3 HBE Design ... 741
 12.4.4 VBE Design ... 750
12.4.5 Distribution of Lateral Force Between Frame and Infill 753
12.4.6 Connection Details 754
12.4.7 Design of Openings 756

12.5 Perforated Steel Plate Shear Walls 758
12.5.1 Special Perforated Steel Plate Shear Walls 758
12.5.2 Steel Plate Shear Walls with Reinforced Corners Cutouts 763

12.6 Design Example 767
12.6.1 Building Description and Loading 767
12.6.2 Global Requirements 767
12.6.3 Basis of Design 769
12.6.4 Web Design 770
12.6.5 HBE Design 772
12.6.6 VBE Design 776
12.6.7 Drift 778
12.6.8 HBE Connection Design 779
12.6.9 Completion of Design 779

12.7 Self-Study Problems 780

References 782

13 Other Ductile Steel Energy Dissipating Systems 787
13.1 Structural Fuse Concept 787
13.2 Energy Dissipation Through Steel Yielding 790
13.2.1 Early Concepts 790
13.2.2 Triangular Plates in Flexure 792
13.2.3 Tapered Shapes 801
13.2.4 C-Shaped and E-Shaped Devices 803
13.3 Energy Dissipation Through Friction 806
13.4 Rocking Systems 818
13.5 Self-Centering Post-Tensioned Systems 823
13.6 Alternative Metallic Materials: Lead, Shape-Memory Alloys, and Others 826
13.7 Validation Quantification 827

References 828

14 Stability and Rotation Capacity of Steel Beams 837
14.1 Introduction 837
14.2 Plate Elastic and Postelastic Buckling Behavior 840
14.3 General Description of Inelastic Beam Behavior 845
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.1 Beams with Uniform Bending Moment</td>
<td>845</td>
</tr>
<tr>
<td>14.3.2 Beams with Moment Gradient</td>
<td>846</td>
</tr>
<tr>
<td>14.3.3 Comparison of Beam Behavior Under Uniform Moment and Moment Gradient</td>
<td>849</td>
</tr>
<tr>
<td>14.4 Inelastic Flange Local Buckling</td>
<td>849</td>
</tr>
<tr>
<td>14.4.1 Modeling Assumptions</td>
<td>849</td>
</tr>
<tr>
<td>14.4.2 Buckling of an Orthotropic Plate</td>
<td>851</td>
</tr>
<tr>
<td>14.4.3 Torsional Buckling of a Restrained Rectangular Plate</td>
<td>853</td>
</tr>
<tr>
<td>14.5 Web Local Buckling</td>
<td>859</td>
</tr>
<tr>
<td>14.6 Inelastic Lateral-Torsional Buckling</td>
<td>862</td>
</tr>
<tr>
<td>14.6.1 General</td>
<td>862</td>
</tr>
<tr>
<td>14.6.2 Beam Under Uniform Moment</td>
<td>863</td>
</tr>
<tr>
<td>14.6.3 Beam Under Moment Gradient</td>
<td>868</td>
</tr>
<tr>
<td>14.7 Code Comparisons</td>
<td>874</td>
</tr>
<tr>
<td>14.8 Interaction of Beam Buckling Modes</td>
<td>877</td>
</tr>
<tr>
<td>14.9 Cyclic Beam Buckling Behavior</td>
<td>881</td>
</tr>
<tr>
<td>14.10 Self-Study Problem</td>
<td>888</td>
</tr>
<tr>
<td>References</td>
<td>888</td>
</tr>
<tr>
<td>Index</td>
<td>891</td>
</tr>
</tbody>
</table>