Renewable Resources for Functional Polymers and Biomaterials

Edited by

Peter A. Williams
Centre for Water Soluble Polymers, Glyndwr University, Wrexham, UK
Contents

Chapter 1 Natural Polymers: Introduction and Overview
Peter A. Williams

1.1 Introduction to Biopolymers .. 1
1.2 Commercial Applications of Biopolymers......................... 4
 1.2.1 Market Size .. 4
 1.2.2 Functional Properties 7
1.3 Scope of this Book .. 13
References .. 13

Chapter 2 Natural Polymer Resources: Isolation, Separation and Characterization
Werner Praznik, Renate Löppert and Anton Huber

2.1 Introduction .. 15
2.2 Established Analytical Techniques in Characterization of Natural Polymers ... 17
2.3 Characterization of Natural Polymers in Fiber Crops 19
2.4 Characterization of Plant Cell Wall Polysaccharides 20
2.5 Characterization of Structural Cereal Polysaccharides 21
2.6 Characterization of Pectic Polysaccharides in Fruits and Vegetables ... 22
2.7 Characterization of Chitin and Chitosan 23
2.8 Characterization of Mucilage and Gums from Plants and Algae ... 23
2.9 Characterization for General Identification and Typing 24
2.10 Isolation and Identification of Sugar Residues in *Ocimum basilicum* L 24
2.11 Characterization of Plant Reserve Polysaccharides 26
2.12 Characterization of Fructans 27
2.12.1 Isolation and Polymer Characterization 28
2.12.2 Structural Characterization by Methylation, Acetylation, Controlled Fragmentation and Chromatographic Fragment Analysis 29
2.13 Characterization of Starches 32
2.13.1 Characterization of Starch Granules 32
2.13.2 Molecular Characterization of Starch Glucans 34
2.13.3 Size Exclusion Chromatography of Starch Glucans 35
2.14 Characterization of Proteins 37
2.14.1 Characterization of Plant Proteins 38
2.14.2 Characterization of Animal Proteins 38
2.14.3 Characterization of Single Cell Proteins 39
2.15 Concluding Remarks 40
2.16 List of Abbreviations 41
References 43

Chapter 3 Cellulose and Its Derivatives in Medical Use 48
Tohru Shibata

3.1 Introduction 48
3.2 Chemistry of Cellulose and Its Derivatives 49
3.2.1 Chemical Structure of Cellulose 49
3.2.2 Microcrystalline and Regenerated Celluloses 50
3.2.3 Cellulose Ethers and Esters 50
3.2.4 Other Cellulose Derivatives 52
3.3 Cellulosic Membranes 52
3.3.1 Outline of Membrane Separation 53
3.3.2 Cellulosic Membranes in Hemodialysis and Related Technologies 54
3.3.3 History of Hemodialysis 54
3.3.4 Cellulosic Hollow Fibers 56
3.3.5 Recent Developments in Hemodialysis Membranes 57
3.3.6 Recently Developed Cellulosic Hemodialysis Membranes 59
3.3.7 Removal of Pathogens with Cellulosic Membranes 61
Chapter 4 Xylan and Xylan Derivatives – Basis of Functional Polymers for the Future 88
Thomas Heinze and Stephan Daus

4.1 Introduction 88
4.2 Occurrence and Structural Diversity of Xylans 89
4.3 Resources and Isolation of Xylans 93
4.4 Characteristics 95
 4.4.1 Molecular Mass 95
 4.4.2 Interaction of Xylans with other Polysaccharides 96
 4.4.3 Thermal Behaviour 97
4.5 Application Potential of Xylans 97
4.6 Biological Activity of Xylans and their Derivatives 98
4.7 Chemical Modification of Xylans 100
 4.7.1 Xylan Ethers 100
 4.7.2 Xylan Esters 106
 4.7.3 Thermoplastic and Unconventional Xylan Derivatives 107
 4.7.4 Oxidation of Xylans 111
4.8 Concluding Remarks 113
4.9 List of Abbreviations and Symbols 113
Acknowledgements 115
References 115

Chapter 5 Starch and its Derived Products: Biotechnological and Biomedical Applications 130
John F. Kennedy, Charles J. Knill, Liu Liu and Parmjit S. Panesar

5.1 Introduction 130
 5.1.1 Composition and Structure 131
 5.1.2 Physicochemical Characteristics 133
5.2 Biotechnological Production of Starch Hydrolysis Products
 5.2.1 Maltodextrins 139
 5.2.2 Glucose and Fructose Syrups 140
 5.2.3 Cyclodextrins 142
5.3 Chemical Modification 143
 5.3.1 Oxidation 144
 5.3.2 Stabilisation 145
 5.3.3 Cross-linking 147
5.4 Specific Biomedical Applications 148
 5.4.1 Orthopaedic Implants 148
 5.4.2 Bone Cements 150
 5.4.3 Tissue Engineering Scaffolds 151
 5.4.4 Drug Delivery Systems 152
 5.4.4 Starch-containing Hydrogels 154
5.5 Concluding Remarks 155

References 155

Chapter 6 Gum Arabic and other Exudate Gums 166
Glyn O. Phillips and Aled O. Phillips

6.1 Introduction 166
6.2 Gum Arabic 167
 6.2.1 Origin 167
 6.2.2 Regulatory Requirements 167
 6.2.3 The Chemical Components of Gum Arabic 170
 6.2.4 The Molecular Architecture of Gum Arabic 171
 6.2.5 How Structure Affects Functional Performance 174
 6.2.6 To Establish an "Emulsification Index" for Variable Gum Arabic Samples 174
 6.2.7 Functionalities which are Related to Molecular Structure 177
6.3 Gum Tragacanth 178
 6.3.1 Definition 178
 6.3.2 Properties 179
 6.3.3 Typical Product Specification of a Commercial Gum Tragacanth 180
 6.3.4 Applications 180
 6.3.5 Composition 180
 6.3.6 Regulatory Status 180
 6.3.7 Current Position 181
6.4 Karaya Gum 181
 6.4.1 Structure 181
 6.4.2 Uses and Applications 182
 6.4.3 Regulatory Status 182
Chapter 7 Alginates: Existing and Potential Biotechnological and Medical Applications

Kurt I. Draget and Gudmund Skjak-Bræk

7.1 Introduction
7.2 Chemical Composition and Conformation
7.3 Sources and Source Dependence
7.4 Properties
7.4.1 Selective Ion Binding
7.4.2 Ionic and Acid Gel Formation
7.4.3 Gel Properties
7.4.4 Biological Properties of the Alginate Molecule
7.5 Tailoring Alginates by in vitro Modification
7.6 Applications of Alginates in Medicine and Biotechnology
7.6.1 Traditional Uses of Alginate in Medicine and Pharmacy
7.6.2 New and Potential Uses of Alginates in Biotechnology and Medicine
7.6.3 Alginate as an Immune-stimulating Agent
7.7 Concluding Remarks

Chapter 8 Pectins: Production, Properties and Applications

H.U. Endress

8.1 Introduction
8.2 Industrial Sources and Production of Pectins
8.3 Physical Properties and Chemical Stability of Pectins
8.3.1 Molecular Weight and Viscosity of Pectins
8.3.2 Chemical Stability of Pectins
8.3.3 Enzymic Determination of Pectin, Poly(galacturonic acid) and Galacturonic Acid
8.4 Medical Applications of Pectins
8.4.1 Effect of Pectin on Cholesterol and Lipid Metabolism
8.4.2 Effect of Pectin on Glucose and Insulin Concentrations
8.4.3 Effect of Pectin on Digestive Enzymes and Hormones
8.4.4 Effect of Pectin on Atherosclerosis
8.4.5 Pectins in Weight Management
Chapter 8. Pectins in Health and Biomedical Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.6</td>
<td>Effect of Pectin on Dumping, Short Bowel and Short Gut Syndromes</td>
<td>228</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Effect of Pectin on Acute Intestinal Infections</td>
<td>229</td>
</tr>
<tr>
<td>8.5</td>
<td>Pectins as Antidote in Metal Poisoning</td>
<td>229</td>
</tr>
<tr>
<td>8.6</td>
<td>Pectins as Soluble Dietary Fibers</td>
<td>233</td>
</tr>
<tr>
<td>8.7</td>
<td>Prebiotic Fermentation of Pectin and Galacturonic Acid Oligomers</td>
<td>235</td>
</tr>
<tr>
<td>8.8</td>
<td>Effect of Pectin on Mutagens and Pathogens</td>
<td>235</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Does Pectin Reduce Cancer Risk?</td>
<td>235</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Effects of Pectin Hydrolyzates on Pathogens</td>
<td>238</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Other Claimed Medical Effects of Pectins</td>
<td>240</td>
</tr>
<tr>
<td>8.9</td>
<td>Biomedical Effects of Pectins on Cell Morphology and Proliferation</td>
<td>241</td>
</tr>
<tr>
<td>8.10</td>
<td>Pectins in Controlled and Targeted Drug Delivery to the Colon</td>
<td>242</td>
</tr>
<tr>
<td>8.10.1</td>
<td>Different Modes of Pectin-based Drug Delivery Systems</td>
<td>242</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Pectins in Related Biomedical and Medicinal Applications</td>
<td>244</td>
</tr>
<tr>
<td>8.11</td>
<td>Pectins in Skincare Products</td>
<td>245</td>
</tr>
<tr>
<td>8.12</td>
<td>Pectin as Raw Material for L-Ascorbic Acid</td>
<td>245</td>
</tr>
<tr>
<td>8.13</td>
<td>Concluding Remarks</td>
<td>246</td>
</tr>
<tr>
<td>8.14</td>
<td>Abbreviations and Symbols</td>
<td>247</td>
</tr>
</tbody>
</table>

Chapter 9. Hyaluronan: a Simple Molecule with Complex Character

Koen P. Vercruysse

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td>9.2</td>
<td>Physicochemical Properties</td>
<td>262</td>
</tr>
<tr>
<td>9.3</td>
<td>Biosynthesis and Source</td>
<td>264</td>
</tr>
<tr>
<td>9.4</td>
<td>Degradation and Turnover</td>
<td>267</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Non-enzymatic Degradation</td>
<td>267</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Enzymatic Degradation</td>
<td>267</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Receptor-mediated Clearance</td>
<td>267</td>
</tr>
<tr>
<td>9.5</td>
<td>Hyaluronan-binding Proteins (HABPs)</td>
<td>268</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Extracellular Matrix Hyaluronan-binding Proteins</td>
<td>269</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Plasma Hyaluronan-binding Proteins</td>
<td>270</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Cell Surface Hyaluronan-binding Proteins</td>
<td>270</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Intracellular Hyaluronan-binding Proteins</td>
<td>273</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Hyaluronan Oligosaccharides and Hyaluronan-binding Proteins</td>
<td>273</td>
</tr>
</tbody>
</table>
Contents

9.6 Cell-biological Functions 274
9.6.1 Cell Behavior and Morphogenesis 274
9.6.2 Hyaluronan and Cancer 274
9.6.3 Hyaluronan and Inflammation 275
9.6.4 Hyaluronan and Wound Healing 277
9.7 Applications 277
9.7.1 Tissue Engineering 277
9.7.2 Drug Delivery 278
9.7.3 Disease Marker 279
9.7.4 Cryopreservation 280
9.7.5 Wound Healing and Adhesion Prevention 280
9.7.6 Anti-inflammation and Viscosupplementation Therapy 281
9.7.7 Viscosurgery 281
9.7.8 Soft-tissue Filler 281
9.8 Concluding Remarks 282
References 283

Chapter 10 Chitin and Chitosan: Sources, Production and Medical Applications 292
Thomas Kean and Maya Thanou

10.1 Introduction 292
10.2 Biomedical Applications of Chitin and Chitosan Materials 294
10.2.1 Chitosan-based Gene Delivery Systems 294
10.2.2 Chitosan-based Materials for Wound Repair 300
10.2.3 Chitosan-based Materials for Artificial Skin 302
10.2.4 Chitosan-based Materials for Bone and Cartilage Repair 302
10.2.5 Chitosan’s Application as a Functional Material in Mucosal Drug Delivery 303
10.2.6 Chitosan Conjugates in Cancer Therapy 306
10.3 Modified Chitosans: Trimethylated Chitosan Applications in Drug Delivery 308
10.4 Concluding Remarks 312
References 313

Chapter 11 β-Glucans 319
Steve W. Cui, Qi Wang and Mei Zhang

11.1 Introduction 319
11.2 Cereal β-Glucans 320
11.2.1 Sources and Structural Features 320
11.2.2 Functional Properties 321
11.2.3 Health Benefits and Applications 325
Chapter 12 Microbial Polyesters: Biosynthesis, Properties, Biodegradation and Applications

Chang-Sik Ha and Won-Ki Lee

12.1 Introduction 346
12.2 Biosyntheses of Microbial Homo- and Copolyesters
 12.2.1 Syntheses of Microbial Homopolyesters 347
 12.2.2 Syntheses of Microbial Copolyesters 350
12.3 Properties and Biodegradation of Microbial Polyesters
 12.3.1 Mechanical Properties of Microbial Polyesters 353
 12.3.2 Molecular Weights of Microbial Polyesters 354
 12.3.3 Biodegradation of Microbial Polyesters 355
12.4 Biodegradability of Polymer Blends Containing Microbial Polyesters 356
12.5 Control of Enzymic Degradation of Microbial Polyesters
 12.5.1 Control of Enzymic Degradation of Microbial Polyesters by Blending 358
 12.5.2 Control of Enzymic Degradation of Microbial Polyesters by Surface Modification 361
12.6 Applications of Microbial Polyesters 362
Chapter 13 Glycoproteins and Adhesion Ligands: Properties and Biomedical Applications

B.K. Mann and S.D. Turner

13.1 Introduction 371
13.2 Prototypical Structural Glycoproteins 372
13.2.1 Fibronectin: A Model Structural Glycoprotein 372
13.2.2 Laminin 376
13.3 Glycoproteins for Biomaterial Applications 377
13.3.1 Surface Modification with Glycoproteins or Peptides 378
13.3.2 Glycoprotein/Peptide Incorporation in Tissue Engineering Scaffolds 380
13.3.3 Other Applications 389
13.3.4 Coupling Methods 389
13.4 Concluding Remarks 391
13.5 Abbreviations and Symbols 393
References 393

Chapter 14 Nucleic Acid Polymers and Applications of Recombinant DNA Technology

Ian Holt and Y. Chan N. Pham

14.1 Introduction 399
14.2 Structure, Location and Properties of DNA 401
14.2.1 Structure of DNA 401
14.2.2 Location of DNA 403
14.2.3 DNA Transcription and Translation 403
14.2.4 DNA Replication 405
14.2.5 DNA Recombination 405
14.3 Chemistry of Nucleic Acids 406
14.3.1 Isolation and Physicochemical Properties of DNA 406
14.3.2 Chemical Synthesis of Oligonucleotides 407
14.4 Genetic Engineering Techniques 409
14.4.1 Restriction Endonucleases 410
14.4.2 Polymerase Chain Reaction 411
14.4.3 Genome Sequencing and Analysis 412