Design of anchorages in concrete

Guide to good practice
prepared by
fib Special Activity Group 4

July 2011
Contents

Preface iii

0 Introduction x

Part I - General provisions

1 Scope 1

1.1 General 1

1.2 Permissible anchor type and anchorage configurations 1

1.3 Prequalification and quality control requirements for products 9

1.4 Permissible anchor dimensions and materials 10

1.5 Permissible anchor loading 11

1.6 Permissible concrete strength 15

1.7 Permissible loading of the concrete members 15

1.8 Reliability classes 16

2 Terminology 21

2.1 Definitions 21

2.2 Indices (subscripts/superscripts) 26

2.3 Actions and resistances 28

2.4 Concrete and steel 31

2.5 Notation – dimensional 32

2.6 Greek symbols 35

2.7 Units 35

3 Basis of design 36

3.1 General 36

3.2 Required verifications 37

3.3 Design format 42

3.4 Partial factors 44

3.4.1 Partial factors for actions 44

3.4.2 Partial factors for resistance 45

3.5 Project specifications and anchor installation 48

3.5.1 Project specification 48

3.5.2 Installation 49

4 Determination of action effects 52

4.1 General 52

4.2 Effect of friction 52

4.3 Ultimate limit state 55

4.3.1 Elastic analysis 55

4.3.2 Plastic analysis 96

4.4 Serviceability limit state and fatigue 102

4.5 Seismic loading 102

5 Determination of concrete condition 102

6 Verification of limit states 103

6.1 Ultimate limit state 103

6.2 Serviceability limit state 104

6.3 Fatigue 105

6.4 Verification for load combinations including seismic actions 111

6.5 Fire 116

6.5.1 General 116

6.5.2 Partial factors 116

6.5.3 Resistance under fire exposure 117
7 Durability
8 Provisions for ensuring the characteristic resistance of the concrete member
 8.1 General
 8.2 Shear resistance of concrete member
 8.3 Resistance to splitting forces

Part II - Characteristic resistance of anchorages with post-installed expansion anchors, undercut anchors, screw anchors and torque-controlled bonded expansion anchors

9 Scope

10 Ultimate limit state – elastic design approach
 10.1 Resistance to tension load
 10.1.1 Required verifications
 10.1.2 Steel failure
 10.1.3 Pullout failure
 10.1.4 Concrete cone failure
 10.1.5 Splitting failure
 10.2 Resistance to shear load
 10.2.1 Required verifications
 10.2.2 Steel failure
 10.2.3 Pullout failure
 10.2.4 Concrete pryout failure
 10.2.5 Concrete edge failure
 10.3 Resistance to combined tension and shear load
 10.3.1 Anchorages far from edges, anchorages close to edges with shear resisted by front anchors
 10.3.2 Anchorages close to edges with shear resisted by the back anchors
 10.3.3 Anchorages loaded by a tension load and a shear load with lever arm

11 Ultimate limit state – plastic design approach
 11.1 Field of application
 11.2 Resistance to tension load
 11.2.1 Steel failure
 11.2.2 Pullout failure
 11.2.3 Concrete cone failure
 11.2.4 Splitting failure
 11.3 Resistance to shear load
 11.3.1 Required verifications
 11.3.2 Steel failure
 11.3.3 Concrete pryout failure
 11.3.4 Concrete edge failure
 11.4 Resistance to combined tension and shear load

12 Serviceability limit state

13 Fatigue loading

14 Seismic loading