Contents

Preface xiii
List of Symbols xix

Chapter 1 Diffusive Fluxes and Material Properties 1
1.1 Introduction 1
1.2 Basic Constitutive Equations 2
1.3 Diffusivities for Energy, Species, and Momentum 7
1.4 Magnitudes of Transport Coefficients 8
1.5 Molecular Interpretation of Transport Coefficients 13
1.6 Limitations on Length and Time Scales 19
References 22
Problems 23

Chapter 2 Fundamentals of Heat and Mass Transfer 26
2.1 Introduction 26
2.2 General Forms of Conservation Equations 27
2.3 Conservation of Mass 34
2.4 Conservation of Energy: Thermal Effects 36
2.5 Heat Transfer at Interfaces 38
2.6 Conservation of Chemical Species 41
2.7 Mass Transfer at Interfaces 43
2.8 Molecular View of Species Conservation 44
References 48
Problems 48

Chapter 3 Formulation and Approximation 53
3.1 Introduction 53
3.2 One-Dimensional Examples 54
3.3 Order-of-Magnitude Estimation and Scaling 69
3.4 "Dimensionality" in Modeling 77
3.5 Time Scales in Modeling 87
References 97
Problems 98

Chapter 4 Solution Methods Based on Scaling Concepts 113
4.1 Introduction 113
4.2 Similarity Method 114
4.3 Regular Perturbation Analysis 120
Chapter 9 Laminar Flow at High Reynolds Number 361
 9.1 Introduction 361
 9.2 General Features of High Reynolds Number Flow 362
 9.3 Irrotational Flow 371
 9.4 Boundary Layers at Solid Surfaces 378
 9.5 Internal Boundary Layers 387
 References 393
 Problems 394

Chapter 10 Forced-Convection Heat and Mass Transfer in Confined Laminar Flows 401
 10.1 Introduction 401
 10.2 Péclet Number 402
 10.3 Nusselt and Sherwood Numbers 406
 10.4 Entrance Region 411
 10.5 Fully Developed Region 415
 10.6 Conservation of Energy: Mechanical Effects 423
 10.7 Taylor Dispersion 427
 References 433
 Problems 434

Chapter 11 Forced-Convection Heat and Mass Transfer in Unconfined Laminar Flows 440
 11.1 Introduction 440
 11.2 Heat and Mass Transfer in Creeping Flow 441
 11.3 Heat and Mass Transfer in Laminar Boundary Layers 446
 11.4 Scaling Laws for Nusselt and Sherwood Numbers 451
 References 457
 Problems 458

Chapter 12 Transport in Buoyancy-Driven Flow 463
 12.1 Introduction 463
 12.2 Buoyancy and the Boussinesq Approximation 464
 12.3 Confined Flows 466
 12.4 Dimensional Analysis and Boundary-Layer Equations 474
 12.5 Unconfined Flows 478
 References 485
 Problems 486

Chapter 13 Transport in Turbulent Flow 491
 13.1 Introduction 491
 13.2 Basic Features of Turbulence 491
 13.3 Time-Smoothed Equations 499
 13.4 Eddy Diffusivity Models 505
13.5 Other Approaches for Turbulent-Flow Calculations 518
 References 524
 Problems 525

Chapter 14 Simultaneous Energy and Mass Transfer and Multicomponent Systems 529
14.1 Introduction 529
14.2 Conservation of Energy: Multicomponent Systems 530
14.3 Simultaneous Heat and Mass Transfer 532
14.4 Introduction to Coupled Fluxes 545
14.5 Stefan–Maxwell Equations 550
14.6 Generalized Diffusion in Dilute Mixtures 553
14.7 Generalized Stefan–Maxwell Equations 557
 References 563
 Problems 564

Chapter 15 Transport in Electrolyte Solutions 573
15.1 Introduction 573
15.2 Formulation of Macroscopic Problems 574
15.3 Macroscopic Examples 580
15.4 Equilibrium Double Layers 585
15.5 Electrokinetic Phenomena 592
 References 601
 Problems 602

Appendix A Vectors and Tensors 609
A.1 Introduction 609
A.2 Representation of Vectors and Tensors 609
A.3 Vector and Tensor Products 612
A.4 Vector-Differential Operators 617
A.5 Integral Transformations 620
A.6 Position Vectors 623
A.7 Orthogonal Curvilinear Coordinates 625
A.8 Surface Geometry 634
 References 638

Appendix B Ordinary Differential Equations and Special Functions 639
B.1 Introduction 639
B.2 First-Order Equations 640
B.3 Equations with Constant Coefficients 641
B.4 Bessel and Spherical Bessel Equations 642
B.5 Other Equations with Variable Coefficients 647
 References 650

Index 651