2009 DoD High Performance Computing Modernization Program Users Group Conference

(HPCMP-UGC 2009)

San Diego, California, USA
15-18 June 2009
Table of Contents

Editor's Preface xi
Conference Committee xiii
Reviewers xiv

1. Computational Fluid Dynamics (CFD)

A Level-Set Approach for Large Scale Cavitation 3
  Michael P. Kinzel, Jules W. Lindau, and Robert F. Kunz

Airflow Simulation over a Vegetated Soil Surface 25
  Phu V. Luong, Robert S. Bernard, and Stacy E. Howington

Comparison of Empirical and Theoretical Computations of Velocity for a Cold Spray Nozzle 27
  Surya Dinavahi, Victor K. Champagne, and Dennis J. Helfrich

Computational Naval Ship Hydrodynamics 32
  Douglas G. Dommermuth, Thomas T. O'Shea, Kyle A. Brucker, Kristine L. Chevalier,
  Dick K. P. Yue, Kelli Hendrickson, and Gabriel Weymouth

Control of Boundary-Layer Separation for Lifting Surfaces 37
  W. Balzer, A. Gross, and H. F. Fasel

Full Annulus High Fidelity Fan and Compressor Simulations 46
  Steven E. Gorrell, Jixian Yao, and Michael G. List

High Performance Computational Modeling of Unsteady Surface Loads in Complex
Weapons Bays 57
  Srinivasan Arunajatesan, Neeraj Sinha, Michael J. Stanek, James E. Grove, and Rudy A. Johnson

Hydrodynamic Shape Optimization for Naval Vehicles 67
  Wesley Wilson, Joseph Gorski, Manivannan Kandasamy, Tomohiro Takai, Frederick Stern,
  and Yusuke Tahara

Implicit LES Computations with Applications to Micro Air Vehicles 73
  Raymond E. Gordnier and Miguel R. Visbal
Integrated Analysis of Scramjet Flowpath with Innovative Inlets ........................................................................... 81
Datta V. Gaitonde, F. Joel Malo-Molina, Daniel Risha, and H. Ebrahimi

Numerical Computations of Unsteady Aerodynamics of Maneuvering Projectiles ................................................. 88
Jabaraj Sahu, James DeSpirito, Karen Heavey, Mark Costello, and Jenna Stahl

Numerical Investigation of Three-Dimensional Separation in Internal and External Flows ........................................... 96
R. Jacobi, A. Gross, and H. Fasel

Quantum Lattice-Gas Algorithm for Quantum Turbulence - CAP Simulations on 12,288 Cores
of Cray XT-5 Einstein at NAVO .................................................................................................................. 106
George Vahala, Jeffrey Yepez, Min Soe, Linda Vahala, and Sean Ziegeler

Simulation of Mach 3 Cylinder Flow Using Kinetic and Continuum Solvers ............................................................... 114
Surya Dinavahi and Eswar Josyula

Tool and Process Improvement for High-Fidelity Compressor Simulations ............................................................... 119
Michael List and David Car

Peter Chang, Minyee Jiang, Dory Lummer, and Krishnan Mahesh

2. Multi-physics (CFD, CSM, CCM, Plasma Physics...)

AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions .......................... 135
Allen L. Kuhl, John B. Bell, and Vincent E. Beckner

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations
for Selectable Thrust Rocket Engines ........................................................................................................... 141
Chung-Chu Chen, Michael J. Nusca, Anthony J. Kotlar, and Michael J. McQuaid

Kestrel – A Fixed Wing Virtual Aircraft Product of the CREATE Program .............................................................. 148
Scott A. Morton, Brett Tillman, David R. McDaniel, David R. Sears, and Todd R. Tuckey

Multidisciplinary Coupling for Active Flapped Rotors ......................................................................................... 153
Mark Potsdam, Mark V. Fulton, Arsenio Dimanlig, and Ben W. Sim

Vulnerability of Structures to Weapons Effects ...................................................................................................... 160
James Baylot, Stephen Akers, James O’Daniel, Byron Armstrong, Kent Danielson, and Richard Weed

3. Computational Chemistry and Materials Science (CCM)

A Web-Accessible Protein Structure Prediction Pipeline .......................................................................................... 169
Michael S. Lee, Rajkumar Bondugula, Valmik Desai, Nela Zavaljevski, In-Chul Yeh, Anders Wallqvist, and Jaques Reifman

Design of Energetic Ionic Liquids .................................................................................................................... 175
Jerry A. Boatz, Gregory A. Voth, Mark S. Gordon, and Sharon Hammer-Schiffer
Direct Quantum Mechanical Simulations of Shocked Energetic Materials Supporting Future Force Insensitive Munitions (IM) Requirements
William D. Mattson, Radhakrishnan Balu, and Betsy M. Rice

Environmental Fate and Transport of Energetic Materials
Margaret M. Hurley and Kristian W. Paul

Million-Atom Count Simulations of the Effects of Carbon Nanotube Length Distributions on Fiber Mechanical Properties
Charles F. Cornwell, Richard W. Haskins, Jeffrey B. Allen, Charles R. Welch, and Robert A. Kirgan

New Prospects for High Performance SONAR, Chemical Sensor, and Communication Device Materials
Tingting Qi, Sergey V. Levchenko, Joseph W. Bennett, Ilya Grinberg, and Andrew M. Rappe

Optimizing Pre-formed Molecules in Mixtures of Ultracold $^{40}$K and $^{87}$Rb on an Optical Lattice: A Challenge Grant and Capabilities Application Project
J. K. Freericks

Parallel Implementation of a Bioinformatics Pipeline for the Design of Pathogen Diagnostic Assays
Ravi Vijaya Satya, Kamal Kumar, Nela Zavaljevski, and Jacques Reifman

Polynitrogen/Nanoaluminum Surface Interactions
Jerry A. Boatz and Dan Sorescu

Predictions of Properties of Energetic Materials from First Principles
Rafal Podeszwa, Betsy M. Rice, DeCarlos Taylor, Fazle Rob, and Krzysztof Szalewicz

Reactive Molecular Dynamics of Shock- and Shear-Induced Chemistry in Energetic Materials for Future Force Insensitive Munitions
Sergey V. Zybin, William A. Goddard III, Peng Xu, Joanne Budzien, and Aidan Thompson

Three-Dimensional Computation of Focused Beam Propagation through Multiple Biological Cells
Matthew S. Starosta, Andrew K. Dunn, and Robert J. Thomas

4. Climate/Weather/Ocean Modeling and Simulation (CWO)

Climatologies Based on the Weather Research and Forecast (WRF) Model
Francois Vandenberghe, Mike Barlage, Scott Swerdlin, Judith Gardiner, Ashok Krishnamurthy, and Alan Chalker

Eddy Resolving Global Ocean Prediction
Alan J. Wallcraft, E. Joseph Metzger, and Ole Martin Smedstad

High-Resolution Simulations of Internal Gravity-Wave Fine Structure Interactions and Implications for Atmospheric Turbulence Forecasting
Joseph Werne, David C. Fritts, and Ling Wang

Multi-scale Forecasting and Targeting of Tropical Cyclones in the Western Pacific
James Doyle, Carolyn Reynolds, Hao Jin, and Richard M. Hodur
Numerical Exploration of the Stable Atmospheric Boundary-Layer
Benjamin T. MacCall, Patrick A. Haines, Edward Measure, David Marlin, Wen-Yih Sun,
Wu-Ron Hsu, and David J. Grove

Ocean Wave Prediction Using Large-Scale Phase-Resolved Computations
Wenting Xiao, Yuming Liu, and Dick K. P. Yue

The Joint Ensemble Forecast System (JEFS) Experiment
Evan L. Kuchera, Jeffrey G. Cunningham, Scott A. Rentschler, Steven A. Rugg,
Matt Sittel, Michael Sestak, Teddy Holt, and James Hansen

5. Signal/Image Processing (SIP) and Sensors; Electronics,
Networking, and Systems/C4SIR (ENS) and Testing

Compressed Sensing Arrays for Frequency-Sparse Signal Detection and Geolocation
Benjamin Miller, Joel Goodman, and Keith Forsythe

Enabling High-Productivity SIP Application Development: Modeling and Simulation
of Superconducting Quantum Interference Filters
Juan C. Chaves, Alan Chalker, David Hudak, Vijay Gadepally, Fernando Escobar,
and Patrick Longhini

Evolving Image Noise Filters through Genetic Programming
Edwin Roger Banks, Paul Agarwal, Marshall McBride, and Claudette Owens

Electronic Properties of High-Performance Capacitor Materials and Nanoscale Multiterminal Devices
J. Bernholc, L. Yu, V. Ranjan, M. Buongiorno Nardelli, W. Lu, K. Saha, and V. Meunier

NetDMF: A Scalable Active Data Hub for Mobile Network Modeling
Jerry Clarke and Ken Renard

Signature Evaluation for Thermal Infrared Countermine and IED Detection Systems: Large-Area
Simulations in an Operational Computing Environment
John F. Peters, Stacy E. Howington, Owen Eslinger, Jerry Ballard, Josh R. Fairley,
Ricky Goodson, and Virginia Carpenter

Stimulation of Live C4ISR Experimentation Environments by Using HPC Simulation
Jason Santiago

6. Computational Electromagnetics and Acoustics

Radar Signature Prediction for Sensing-through-the-Wall by Xpatch and AFDTD
Traian Dogaru, Anders Sullivan, Chris Kenyon, and Calvin Le

Rapid Antenna Model Creation
Charles Macon, David Henn, Steve Wong, Chris Kung, and Jianming Jin

Realization of Linear Wave-Propagation Models from HPC Simulations
Stephen A. Ketcham, Michael W. Parker, and Minh Q. Phan
Virtual Prototyping of Directed Energy Weapons

M. T. Bettencourt, K. L. Cartwright, T. P. Fleming, A. D. Greenwood, J. D. Keisling,
M. Lambrecht, N. P. Lockwood, and P. J. Mardahl

7. Software and Hardware Infrastructure

An Analysis of GPU Parallel Computing

Song Jun Park

Computational Model Builder (CMB): A Cross-Platform Suite of Tools for Model
Creation and Setup

Amanda Hines, Stacy Howington, Barry White, Owen Eslinger, Chris Kees, Matthew Farthing,
Robert O'Bara, Rusty Blue, Yumin Yuan, Andy Bauer, and Bradford J. King

Multiple Markov Models for Detecting Internet Anomalies from BGP Data

Judith D. Gardiner

Software Process for Rapid Development of HPC Software Using CMake

Bill Hoffman, David Cole, and John Vines

SSH-Enabled ParaView

Joel P. Martin, Rhonda J. Vickery, Sean Ziegeler, and Rick Angelini

Using Star-P® on DoD High Performance Computing Systems

Bracy H. Elton, Siddharth Samsi, Harrison Ben Smith, Laura Humphrey, Stanley Ahalt,
Alan Chalker, Niraj Srivastava, Aquil H. Abdullah, and Patrick Boyle

Visual Parallel Computing Using Python-Based VISION/HPC

Jose Unpingco

Vortex Detection through the Visualization Toolkit

John van der Zwaag, Rhonda J. Vickery, and Robert Moorhead

8. Software Performance and Performance Modeling

A Scalability Study (as a Guide for HPC Operations at a Remote Test Facility) on DSRC
HPC Systems of Radio Frequency Tomography Code Written for MATLAB® and Parallelized
via Star-P®

Bracy H. Elton, Siddharth Samsi, Harrison Ben Smith, Laura Humphrey, Brian Guilfoos,
Stanley Ahalt, Alan Chalker, Kevin M. Magde, Niraj Srivastava, Aquil H. Abdullah,
and Patrick Boyle

Evaluating Parallel Extensions to High Level Languages Using the HPC Challenge Benchmarks

Laura Humphrey, Brian Guilfoos, Harrison Smith, Andrew Warnock, Jose Unpingco,
Bracy Elton, and Alan Chalker

Finding the Best HPCMP Architectures Using Benchmark Application Results for TI-09

Laura Brown, Paul M. Bennett, Mark Cowan, Carrie Leach, and Thomas C. Oppe

Improving Performance of Codes with Large/Irregular Stride Memory Access Patterns
via High Performance Reconfigurable Computers

Khalid H. Abed and Gerald R. Morris
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making Performance Analysis and Tuning Part of the Software Development Cycle</td>
<td>430</td>
</tr>
<tr>
<td>Wyatt Spear, Sameer Shende, Allen Malony, Ricardo Portillo, Patricia J. Teller, David Cronk, Shirley Moore, and Dan Terpstra</td>
<td></td>
</tr>
<tr>
<td>Measuring and Understanding Variation in Benchmark Performance</td>
<td>438</td>
</tr>
<tr>
<td>Nicholas J. Wright, Shava Smullen, Catherine Mills Olschanowsky, Jim Hayes, and Allan Snively</td>
<td></td>
</tr>
<tr>
<td>PSINS: An Open Source Event Tracer and Execution Simulator</td>
<td>444</td>
</tr>
<tr>
<td>Mustafa M. Tikir, Michael A. Laurenzano, Laura Carrington, and Allan Snively</td>
<td></td>
</tr>
<tr>
<td>Scalability of the CTH Shock Physics Code on the Cray XT</td>
<td>450</td>
</tr>
<tr>
<td>Stephen J. Schraml and Thomas M. Kendall</td>
<td></td>
</tr>
<tr>
<td>Solution of Ultra-Large Structural Mechanics Problems during CAP-I 2008 on the DaVinci System</td>
<td>454</td>
</tr>
<tr>
<td>Börje Andersson, Urban Falk, and Scott Fawaz</td>
<td></td>
</tr>
<tr>
<td>A Java-Based Interface for Creating and Mining RDF Database</td>
<td>461</td>
</tr>
<tr>
<td>Siddharth S. Samsi, Brian Guilfoos, Harrison B. Smith, Jose Unpingco, and Alan Chalker</td>
<td></td>
</tr>
<tr>
<td><strong>9. Computational Methods</strong></td>
<td></td>
</tr>
<tr>
<td>A Migration-Based Parallel Programming Model with Architectural Support Structures</td>
<td>467</td>
</tr>
<tr>
<td>Megan Vance</td>
<td></td>
</tr>
<tr>
<td>Application of Multi-block Grid and Parallelization Techniques in Hydrodynamic Modelling</td>
<td>476</td>
</tr>
<tr>
<td>Phu V. Luong and Raymond S. Chapman</td>
<td></td>
</tr>
<tr>
<td>Building and Matching Applications to NRL Supercomputers</td>
<td>479</td>
</tr>
<tr>
<td>Robert Rosenberg, Stephen Bique, Wendell Anderson, and Marco Lanzagorta</td>
<td></td>
</tr>
<tr>
<td>Geo-temporal Visualization of Information Collected from Large Databases Using the Time-Based COCOM Operational Picture (TIMECOP) Server</td>
<td>485</td>
</tr>
<tr>
<td>Kevin P. Roe, Maria Murphy, and Jeff Schmidt</td>
<td></td>
</tr>
<tr>
<td>Use of the NRL DHPI System to Automate the Generation of Nomographs</td>
<td>488</td>
</tr>
<tr>
<td>Keith Obenschain, Gopal Patnaik, and Jay Boris</td>
<td></td>
</tr>
<tr>
<td><strong>Author Index</strong></td>
<td>493</td>
</tr>
</tbody>
</table>