Contents

New to the Third Edition 17
Preface 19

1 Introduction 27
1.1 What Is an Algorithm? 29
Exercises 1.1 33
1.2 Fundamentals of Algorithmic Problem Solving 35
Understanding the Problem 35
Ascertaining the Capabilities of the Computational Device 35
Choosing between Exact and Approximate Problem Solving 37
Algorithm Design Techniques 37
Designing an Algorithm and Data Structures 38
Methods of Specifying an Algorithm 38
Proving an Algorithm’s Correctness 39
Analyzing an Algorithm 40
Coding an Algorithm 41
Exercises 1.2 43
1.3 Important Problem Types 44
Sorting 45
Searching 46
String Processing 46
Graph Problems 47
Combinatorial Problems 47
Geometric Problems 48
Numerical Problems 48
Exercises 1.3 49
1.4 Fundamental Data Structures 51
 Linear Data Structures 51
 Graphs 54
 Trees 57
 Sets and Dictionaries 61
 Exercises 1.4 63
 Summary 64

2 Fundamentals of the Analysis of Algorithm Efficiency 67
 2.1 The Analysis Framework 68
 Measuring an Input's Size 69
 Units for Measuring Running Time 70
 Orders of Growth 71
 Worst-Case, Best-Case, and Average-Case Efficiencies 73
 Recapitulation of the Analysis Framework 76
 Exercises 2.1 76
 2.2 Asymptotic Notations and Basic Efficiency Classes 78
 Informal Introduction 78
 O-notation 79
 Ω-notation 80
 Θ-notation 81
 Useful Property Involving the Asymptotic Notations 81
 Using Limits for Comparing Orders of Growth 82
 Basic Efficiency Classes 84
 Exercises 2.2 84
 2.3 Mathematical Analysis of Nonrecursive Algorithms 87
 Exercises 2.3 93
 2.4 Mathematical Analysis of Recursive Algorithms 96
 Exercises 2.4 102
 2.5 Example: Computing the nth Fibonacci Number 106
 Exercises 2.5 109
 2.6 Empirical Analysis of Algorithms 110
 Exercises 2.6 115
 2.7 Algorithm Visualization 117
 Summary 120
3 Brute Force and Exhaustive Search

3.1 Selection Sort and Bubble Sort
 Selection Sort 124
 Bubble Sort 126
 Exercises 3.1 128

3.2 Sequential Search and Brute-Force String Matching
 Sequential Search 130
 Brute-Force String Matching 131
 Exercises 3.2 132

3.3 Closest-Pair and Convex-Hull Problems by Brute Force
 Closest-Pair Problem 134
 Convex-Hull Problem 135
 Exercises 3.3 139

3.4 Exhaustive Search
 Traveling Salesman Problem 142
 Knapsack Problem 142
 Assignment Problem 145
 Exercises 3.4 146

3.5 Depth-First Search and Breadth-First Search
 Depth-First Search 148
 Breadth-First Search 151
 Exercises 3.5 154
 Summary 156

4 Decrease-and-Conquer

4.1 Insertion Sort
 Exercises 4.1 162

4.2 Topological Sorting
 Exercises 4.2 168

4.3 Algorithms for Generating Combinatorial Objects
 Generating Permutations 170
 Generating Subsets 172
 Exercises 4.3 174
4.4 Decrease-by-a-Constant-Factor Algorithms
 Binary Search 176
 Fake-Coin Problem 178
 Russian Peasant Multiplication 179
 Josephus Problem 180
 Exercises 4.4 182

4.5 Variable-Size-Decrease Algorithms
 Computing a Median and the Selection Problem 184
 Interpolation Search 187
 Searching and Insertion in a Binary Search Tree 189
 The Game of Nim 190
 Exercises 4.5 192
 Summary 193

5 Divide-and-Conquer 195

5.1 Mergesort 198
 Exercises 5.1 200

5.2 Quicksort 202
 Exercises 5.2 207

5.3 Binary Tree Traversals and Related Properties 208
 Exercises 5.3 211

5.4 Multiplication of Large Integers and
 Strassen’s Matrix Multiplication 212
 Multiplication of Large Integers 213
 Strassen’s Matrix Multiplication 215
 Exercises 5.4 217

5.5 The Closest-Pair and Convex-Hull Problems
 by Divide-and-Conquer 218
 The Closest-Pair Problem 218
 Convex-Hull Problem 221
 Exercises 5.5 223
 Summary 224
6 Transform-and-Conquer

6.1 Presorting
Exercises 6.1

6.2 Gaussian Elimination
LU Decomposition
Computing a Matrix Inverse
Computing a Determinant
Exercises 6.2

6.3 Balanced Search Trees
AVL Trees
2-3 Trees
Exercises 6.3

6.4 Heaps and Heapsort
Notion of the Heap
Heapsort
Exercises 6.4

6.5 Horner's Rule and Binary Exponentiation
Horner's Rule
Binary Exponentiation
Exercises 6.5

6.6 Problem Reduction
Computing the Least Common Multiple
Counting Paths in a Graph
Reduction of Optimization Problems
Linear Programming
Reduction to Graph Problems
Exercises 6.6
Summary

7 Space and Time Trade-Offs

7.1 Sorting by Counting
Exercises 7.1

7.2 Input Enhancement in String Matching
Horspool's Algorithm
Boyer-Moore Algorithm 289
Exercises 7.2 293

7.3 Hashing 295
Open Hashing (Separate Chaining) 296
Closed Hashing (Open Addressing) 298
Exercises 7.3 300

7.4 B-Trees 302
Exercises 7.4 305
Summary 306

8 Dynamic Programming 309

8.1 Three Basic Examples 311
Exercises 8.1 316

8.2 The Knapsack Problem and Memory Functions 318
Memory Functions 320
Exercises 8.2 322

8.3 Optimal Binary Search Trees 323
Exercises 8.3 329

8.4 Warshall’s and Floyd’s Algorithms 330
Warshall’s Algorithm 330
Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem 334
Exercises 8.4 337
Summary 338

9 Greedy Technique 341

9.1 Prim’s Algorithm 344
Exercises 9.1 348

9.2 Kruskal’s Algorithm 351
Disjoint Subsets and Union-Find Algorithms 353
Exercises 9.2 357

9.3 Dijkstra’s Algorithm 359
Exercises 9.3 363
9.4 Huffman Trees and Codes
 Exercises 9.4
 Summary

10 Iterative Improvement

10.1 The Simplex Method
 Geometric Interpretation of Linear Programming
 An Outline of the Simplex Method
 Further Notes on the Simplex Method
 Exercises 10.1

10.2 The Maximum-Flow Problem
 Exercises 10.2

10.3 Maximum Matching in Bipartite Graphs
 Exercises 10.3

10.4 The Stable Marriage Problem
 Exercises 10.4
 Summary

11 Limitations of Algorithm Power

11.1 Lower-Bound Arguments
 Trivial Lower Bounds
 Information-Theoretic Arguments
 Adversary Arguments
 Problem Reduction
 Exercises 11.1

11.2 Decision Trees
 Decision Trees for Sorting
 Decision Trees for Searching a Sorted Array
 Exercises 11.2

11.3 P, NP, and NP-Complete Problems
 P and NP Problems
 NP-Complete Problems
 Exercises 11.3
11.4 Challenges of Numerical Algorithms 438
 Exercises 11.4 445
 Summary 446

12 Coping with the Limitations of Algorithm Power 449

12.1 Backtracking 450
 n-Queens Problem 451
 Hamiltonian Circuit Problem 452
 Subset-Sum Problem 453
 General Remarks 454
 Exercises 12.1 456

12.2 Branch-and-Bound 458
 Assignment Problem 459
 Knapsack Problem 462
 Traveling Salesman Problem 464
 Exercises 12.2 466

12.3 Approximation Algorithms for \(NP\)-Hard Problems 467
 Approximation Algorithms for the Traveling Salesman Problem 469
 Approximation Algorithms for the Knapsack Problem 479
 Exercises 12.3 483

12.4 Algorithms for Solving Nonlinear Equations 485
 Bisection Method 486
 Method of False Position 490
 Newton's Method 490
 Exercises 12.4 493
 Summary 494

Epilogue 497

APPENDIX A

Useful Formulas for the Analysis of Algorithms 501
 Properties of Logarithms 501
 Combinatorics 501
 Important Summation Formulas 502
 Sum Manipulation Rules 502
APPENDIX B

Short Tutorial on Recurrence Relations 505
Sequences and Recurrence Relations 505
Methods for Solving Recurrence Relations 506
Common Recurrence Types in Algorithm Analysis 511

References 519

Hints to Exercises 529

Index 571