Biomateriomics

With 159 Figures
Contents

Part I A Materiomics Perspective

1 **Introduction** .. 3
1.1 Introduction ... 3
1.2 The Unpredictable Nature of Materials 4
1.3 Differences Between Material and Structure 5
1.4 Starting at the Bottom .. 11
1.5 Lessons from Nature: Biological Materials and Biomimetics ... 13
1.6 Advancement and Convergence 16
1.7 A New Perspective: Materiomics 19
References ... 22

2 **The Materiome** .. 27
2.1 Introduction ... 27
2.2 Motivation and Scope ... 30
2.3 Material Versus Materiome 34
2.4 Functionality Through Architecture 37
2.5 Function Versus Application 41
2.6 Material Behavior Scaling: Multiscale Perspectives 47
2.7 Extending the Materiome: Hierarchies and Complexity 52
2.8 Summary .. 57
References ... 57

3 **The Challenges of Biological Materials** 61
3.1 Introduction ... 61
3.2 Proteins, Proteins... Everywhere! 62
3.3 Soft Matter, Entropy, and Folding for Function 69
3.4 Nature’s Hierarchies ... 76
3.5 Mechanistic Insights ... 86
3.6 ‘Shaky’ Foundations of Biological Materials 91
3.7 Summary .. 100
3.8 Suggested Readings .. 101
Contents

Part I Universalities-Diversity Paradigm: Music, Materiomics, and Category Theory

4 Universality-Diversity Paradigm: Music, Materiomics, and Category Theory

4.1 Introduction

4.2 Universality-Diversity Paradigm

4.3 Tu(r)n ing Weakness into Strength

4.4 Music and Nature: Complexity from Common Elements

4.5 Comprehension by Analogies: Functional Similes and Abstraction

4.6 Category Theoretic Analysis: Linking Hierarchical Structure and Meaning

4.7 Language to Ontology Logs (*ologs*)

4.8 Proteins and Communication Networks

4.9 Spider Silk and Music

4.10 Motivating the Abstraction

4.11 A New Merger of Science and Art?

4.12 Summary

4.13 Key Citations

References

101

Part II Methods and Tools

5 Experimental Approaches

5.1 Introduction

5.2 Advantages of Experimentation

5.3 Overview of Methodologies

5.4 One at a Time: Single Molecule Assays

5.5 Atomic Force Microscopy: The Molecular Skeleton Key

5.6 Microscale Approaches: Cells and Tissues

5.7 Summary

5.8 Suggested Readings

References

173

6 Computational Approaches and Simulation

6.1 Introduction

6.2 Advantages of Modeling and Computation

6.3 Necessity of Atomistic Investigation

6.4 Overview of Molecular Dynamics

6.5 Atomistic Force Fields: Conventional and Reactive

6.5.1 Conventional Force Fields

6.5.2 Reactive Force Fields

6.6 Limitations of Full Atomistic Simulation

6.7 Coarse-Graining and Other Multiscale Methods

6.8 Example Coarse-Grain Approaches

6.9 Bridging Hierarchies: Coarse-Grain Model Formulation

6.9.1 Coarse-Grain Potential Type and Quantity

6.9.2 Full Atomistic Test Suite

References

213

247

248

249
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Pathological Materiomics</td>
<td>357</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>357</td>
</tr>
<tr>
<td>9.2</td>
<td>Mechanics of Disease</td>
<td>358</td>
</tr>
<tr>
<td>9.3</td>
<td>Sickle Cell Disease: The “First” Molecular Disease</td>
<td>360</td>
</tr>
<tr>
<td>9.4</td>
<td>Malaria and Red Blood Cells</td>
<td>366</td>
</tr>
<tr>
<td>9.5</td>
<td>Progeria: A Precocious Mutation</td>
<td>371</td>
</tr>
<tr>
<td>9.6</td>
<td>Brittle Bones</td>
<td>375</td>
</tr>
<tr>
<td>9.7</td>
<td>Protein Aggregation and Alzheimer’s Disease</td>
<td>382</td>
</tr>
<tr>
<td>9.8</td>
<td>Outlook and Summary</td>
<td>388</td>
</tr>
<tr>
<td>9.9</td>
<td>Suggested Readings</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>390</td>
</tr>
<tr>
<td>10</td>
<td>Synthesis and Design</td>
<td>399</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>399</td>
</tr>
<tr>
<td>10.2</td>
<td>Materials Inspired by Complex Biology</td>
<td>400</td>
</tr>
<tr>
<td>10.3</td>
<td>Benefitting from Nature’s Misfolds</td>
<td>404</td>
</tr>
<tr>
<td>10.4</td>
<td>Multipurpose Folding DNA</td>
<td>411</td>
</tr>
<tr>
<td>10.5</td>
<td>Piecewise Controlled Self-assembly</td>
<td>416</td>
</tr>
<tr>
<td>10.6</td>
<td>Summary</td>
<td>419</td>
</tr>
<tr>
<td>10.7</td>
<td>Suggested Readings</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>421</td>
</tr>
<tr>
<td>11</td>
<td>The Future of Biomateriomics</td>
<td>425</td>
</tr>
<tr>
<td>11.1</td>
<td>The Inevitability of Complexity and Convergence</td>
<td>425</td>
</tr>
<tr>
<td>11.2</td>
<td>The Future of Materiomics</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>429</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>431</td>
</tr>
</tbody>
</table>