Metal Ions in Life Sciences

edited by

Astrid Sigel,\(^{(1)}\) Helmut Sigel,\(^{(1)}\) and Roland K. O. Sigel\(^{(2)}\)

\(^{(1)}\) Department of Chemistry
Inorganic Chemistry
University of Basel
Spitalstrasse 51
CH-4056 Basel, Switzerland

\(^{(2)}\) Institute of Inorganic Chemistry
University of Zürich
Winterthurerstrasse 190
CH-8057 Zürich, Switzerland

Volume 9

Structural and Catalytic Roles of Metal Ions in RNA

RSC Publishing
Contents

HISTORICAL DEVELOPMENT AND PERSPECTIVES OF THE SERIES v

PREFACE TO VOLUME 9 vii

CONTRIBUTORS TO VOLUME 9 xvii

TITLES OF VOLUMES 1–44 IN THE *METAL IONS IN BIOLOGICAL SYSTEMS* SERIES xxi

CONTENTS OF VOLUMES IN THE *METAL IONS IN LIFE SCIENCES* SERIES xxiii

1 METAL ION BINDING TO RNA

Pascal Auffinger, Neena Grover, and Eric Westhof

Abstract 2

1. Introduction 3
2. Details of Ion Coordination 3
3. Physiological Relevance of Metal Ions 5
4. Monovalent Cations 6
5. Divalent Cations 10
6. Trivalent Cations 20
7. Other Trivalent and Tetravalent Cations 24
8. Anions 25
9. Subjectivity in the Structure Determination Process 26
10. Summary 26

Acknowledgments 28
 Abbreviations and Definitions 28
 References 29

 2 METHODS TO DETECT AND CHARACTERIZE METAL ION BINDING SITES IN RNA 37
 Michèle C. Erat and Roland K. O. Sigel

 Abstract 39
 1. Introduction 39
 2. General Considerations 40
 3. Spectroscopic Methods 46
 4. Chemical and Biochemical Methods 67
 5. Computational Methods 80
 6. Calculation of Binding Constants 85
 7. Concluding Remarks and Future Directions 89
 Acknowledgments 90
 Abbreviations 90
 References 91

 3 IMPORTANCE OF DIFFUSE METAL ION BINDING TO RNA 101
 Zhi-Jie Tan and Shi-Jie Chen

 Abstract 102
 1. Introduction 102
 2. Diffuse Ions Provide a Significant Stabilizing Force for RNA Structure 103
 3. Diffuse Ion is Critical to RNA Folding Kinetics 110
 4. Theoretical Predictions for the Diffuse Ion Binding to RNAs 113
 5. Correlated Distribution of Multivalent Diffuse Ions: Theory Versus Experiment 115
 6. General Conclusions 119
 Acknowledgments 120
 Abbreviations 120
 References 121

 4 RNA QUADRUPLEXES 125
 Kangkan Halder and Jörg S. Hartig

 Abstract 125
 1. Introduction To RNA Quadruplexes 126
 2. Thermodynamic Stability 127
 3. Conformational Variations 130
CONTENTS

4. Biological Function 130
5. Conclusions 135
Acknowledgment 136
Abbreviations 136
References 137

5 THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES 141
Adrian R. Ferré-D’Amaré and Wade C. Winkler

Abstract 142
1. Introduction 142
2. Metal Ions that Assist Recognition of Riboswitch Ligands 145
3. Metal Ions and Riboswitch Folding 151
5. Magnesium-Sensing Riboswitches: The M-Box RNA 161
6. Are There Additional Classes of Metal-Sensing Riboswitches? 168
Acknowledgments 169
Abbreviations 169
References 170

6 METAL IONS: SUPPORTING ACTORS IN THE PLAYBOOK OF SMALL RIBOZYMES 175
Alexander E. Johnson-Buck, Sarah E. McDowell, and Nils G. Walter

Abstract 176
1. Introduction 176
2. Interactions Between Metal Ions and Small Ribozymes 178
3. Roles of Metal Ions in Small Ribozymes 183
4. Concluding Remarks and Future Directions 189
Acknowledgment 190
Abbreviations and Definitions 190
References 191

7 MULTIPLE ROLES OF METAL IONS IN LARGE RIBOZYMES 197
Daniela Donghi and Joachim Schnabl

Abstract 198
1. Introduction 198
2. Metal Ions in Folding and Catalysis: A Brief Overview 200
3. Group I Intron Ribozymes 205
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Group II Intron Ribozymes</td>
<td>212</td>
</tr>
<tr>
<td>5.</td>
<td>RNase P</td>
<td>221</td>
</tr>
<tr>
<td>6.</td>
<td>Concluding Remarks</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>228</td>
</tr>
<tr>
<td>8</td>
<td>THE SPLICEOSOME AND ITS METAL IONS</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Samuel E. Butcher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>2. The Pre-mRNA Splicing Mechanism</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>3. Is the Spliceosome a Ribozyme?</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>4. Structural Biology of the Spliceosome</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>5. Concluding Remarks and Future Directions</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>249</td>
</tr>
<tr>
<td>9</td>
<td>THE RIBOSOME: A MOLECULAR MACHINE</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Krista Trappi and Norbert Polacek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>1. The Ribosome -- The Largest Natural Ribozyme</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>2. Ribosomal Biogenesis</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>3. The Molecular Anatomy of Functional Centers</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>4. Metal Ions and the Evolution of the Ribosome</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>5. Concluding Remarks</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>273</td>
</tr>
<tr>
<td>10</td>
<td>METAL ION REQUIREMENTS IN ARTIFICIAL</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>RIBOZYMES THAT CATALYZE AMINOACYLATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND REDOX REACTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hiroaki Suga, Kazuki Futai, and Koichiro Jin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>1. Introduction</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>2. Flexizymes</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>3. Redox Ribozymes</td>
<td>288</td>
</tr>
</tbody>
</table>
CONTENTS

4. Conclusions 294
Acknowledgments 294
Abbreviations 294
References 295

11 METAL ION BINDING AND FUNCTION IN NATURAL AND ARTIFICIAL SMALL RNA ENZYMES FROM A STRUCTURAL PERSPECTIVE 299
Joseph E. Wedekind

Abstract 300
1. Introduction 301
2. Expectations of Metal Binding and Crystallographic Observations 304
3. Metal Ion Binding and Function in the Structures of Natural and Artificial Ribozymes 309
4. Conclusions and Future Prospects 334
Acknowledgments 337
Abbreviations 337
References 338

12 BINDING OF KINETICALLY INERT METAL IONS TO RNA: THE CASE OF PLATINUM(II) 347
Erich G. Chapman, Alethia A. Hostetter, Maire F. Osborn, Amanda L. Miller, and Victoria J. DeRose

Abstract 348
1. Introduction 348
2. Pt(II) Compounds: Properties and Biological Distribution 350
3. Pt(II) Compounds and RNA Processes 358
4. In Vitro Studies of RNA-Pt(II) Adducts 361
5. Structural Features of Pt(II)-Nucleic Acid Adducts 368
6. Concluding Remarks 371
Acknowledgments 372
Abbreviations 373
References 373

SUBJECT INDEX 379