CONTENTS

Preface to the new edition .. xxvii
Preface to the first edition ... xxviii
Authors ... xxxi
Some notations and remarks ... xxxiii

Part I. Exact Solutions of Nonlinear Partial Differential Equations 1

1. First-Order Quasilinear Equations ... 3
 1.1. Equations with Two Independent Variables Containing Arbitrary Parameters .. 3
 1.1.1. Coefficients of Equations Contain Power-Law Functions 3
 1.1.2. Coefficients of Equations Contain Exponential Functions 11
 1.1.3. Coefficients of Equations Contain Hyperbolic Functions 14
 1.1.4. Coefficients of Equations Contain Logarithmic Functions 16
 1.1.5. Coefficients of Equations Contain Trigonometric Functions 17
 1.2. Equations with Two Independent Variables Containing Arbitrary Functions ... 19
 1.2.1. Equations Contain Arbitrary Functions of One Variable 19
 1.2.2. Equations Contain Arbitrary Functions of Two Variables 30
 1.3. Other Quasilinear Equations ... 35
 1.3.1. Equations with Three Independent Variables 35
 1.3.2. Equations with Arbitrary Number of Independent Variables 39

2. First-Order Equations with Two Independent Variables Quadratic in Derivatives 43
 2.1. Equations Containing Arbitrary Parameters 43
 2.1.1. Equations of the Form $\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = f(x, y, w)$ 43
 2.1.2. Equations of the Form $f(x, y, w) \frac{\partial w}{\partial x} + g(x, y, w) \frac{\partial w}{\partial y} = h(x, y, w)$ 45
 2.1.3. Equations of the Form $f(x, y, w) \frac{\partial w}{\partial x} + g(x, y, w) \frac{\partial w}{\partial y} + h(x, y, w) \frac{\partial w}{\partial y} = s(x, y, w)$. 47
 2.1.4. Equations of the Form $\frac{\partial w}{\partial x} + f(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 = g(x, y, w)$ 51
 2.1.5. Equations of the Form $\frac{\partial w}{\partial x} + f(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 + g(x, y, w) \frac{\partial w}{\partial y} = h(x, y, w)$ 59
 2.1.6. Equations of the Form $f(x, y, w) \left(\frac{\partial w}{\partial x} \right)^2 + g(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 = h(x, y, w)$ 63
 2.1.7. Equations of the Form $f(x, y) \left(\frac{\partial w}{\partial x} \right)^2 + g(x, y) \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = h(x, y, w)$. 69
 2.1.8. Other Equations ... 73
 2.2. Equations Containing Arbitrary Functions 77
 2.2.1. Equations of the Form $\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = f(x, y, w)$ 77
 2.2.2. Equations of the Form $f(x, y) \frac{\partial w}{\partial x} + g(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 = h(x, y, w)$ 79
 2.2.3. Equations of the Form $\frac{\partial w}{\partial x} + f(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 + g(x, y, w) \frac{\partial w}{\partial y} = h(x, y, w)$ 86
 2.2.4. Equations of the Form $f(x, y, w) \left(\frac{\partial w}{\partial x} \right)^2 + g(x, y, w) \left(\frac{\partial w}{\partial y} \right)^2 = h(x, y, w)$ 89
 2.2.5. Equations of the Form $\left(\frac{\partial w}{\partial x} \right)^2 + f(x, y, w) \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} = g(x, y, w)$. 92
 2.2.6. Other Equations ... 95
3. First-Order Nonlinear Equations with Two Independent Variables of General Form

3.1. Nonlinear Equations Containing Arbitrary Parameters

- **3.1.1. Equations Contain the Fourth Powers of Derivatives**
- **3.1.2. Equations Contain Derivatives in Radicands**
- **3.1.3. Equations Contain Arbitrary Powers of Derivatives**
- **3.1.4. More Complicated Equations**

3.2. Equations Containing Arbitrary Functions of Independent Variables

- **3.2.1. Equations Contain One Arbitrary Power of Derivative**
- **3.2.2. Equations Contain Two or Three Arbitrary Powers of Derivatives**

3.3. Equations Containing Arbitrary Functions of Derivatives

- **3.3.1. Equations Contain Arbitrary Functions of One Variable**
- **3.3.2. Equations Contain Arbitrary Functions of Two Variables**
- **3.3.3. Equations Contain Arbitrary Functions of Three Variables**
- **3.3.4. Equations Contain Arbitrary Functions of Four Variables**

4. First-Order Nonlinear Equations with Three or More Independent Variables

4.1. Nonlinear Equations with Three Variables Quadratic in Derivatives

- **4.1.1. Equations Contain Squares of One or Two Derivatives**
- **4.1.2. Equations Contain Squares of Three Derivatives**
- **4.1.3. Equations Contain Products of Derivatives with Respect to Different Variables**
- **4.1.4. Equations Contain Squares and Products of Derivatives**

4.2. Other Nonlinear Equations with Three Variables Containing Parameters

- **4.2.1. Equations Cubic in Derivatives**
- **4.2.2. Equations Contain Roots and Moduli of Derivatives**
- **4.2.3. Equations Contain Arbitrary Powers of Derivatives**

4.3. Nonlinear Equations with Three Variables Containing Arbitrary Functions

- **4.3.1. Equations Quadratic in Derivatives**
- **4.3.2. Equations with Power Nonlinearity in Derivatives**
- **4.3.3. Equations with Arbitrary Dependence on Derivatives**
- **4.3.4. Nonlinear Equations of General Form**

4.4. Nonlinear Equations with Four Independent Variables

- **4.4.1. Equations Quadratic in Derivatives**
- **4.4.2. Equations Contain Power-Law Functions of Derivatives**

4.5. Nonlinear Equations with Arbitrary Number of Variables Containing Arbitrary Parameters

- **4.5.1. Equations Quadratic in Derivatives**
- **4.5.2. Equations with Power-Law Nonlinearity in Derivatives**

4.6. Nonlinear Equations with Arbitrary Number of Variables Containing Arbitrary Functions

- **4.6.1. Equations Quadratic in Derivatives**
- **4.6.2. Equations with Power-Law Nonlinearity in Derivatives**
- **4.6.3. Equations Contain Arbitrary Functions of Two Variables**
- **4.6.4. Nonlinear Equations of General Form**
5. Second-Order Parabolic Equations with One Space Variable

5.1. Equations with Power-Law Nonlinearities

5.1.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bw + cw^2$

5.1.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b_1 w + b_2 w^2 + b_3 w^3$

5.1.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bu^k + cw^n + sw^m$

5.1.4. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$

5.1.5. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + bu^k \frac{\partial w}{\partial x} + f(w)$

5.1.6. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$

5.1.7. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b \left(\frac{\partial w}{\partial x} \right)^2 + f(x, t, w)$

5.1.8. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$

5.1.9. Equations of the Form $\frac{\partial w}{\partial t} = a w^k \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$

5.1.10. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right)$

5.1.11. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + bw^k$

5.1.12. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + bw + c_1 w^k + c_2 w^k + c_3 w^k$

5.1.13. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(\left[f(w) \frac{\partial w}{\partial x} \right] + g(w) \right)$

5.1.14. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(\left[f(w) \frac{\partial w}{\partial x} \right] + g(x, t, w) \right)$

5.1.15. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(\left[f(w) \frac{\partial w}{\partial x} \right] + g(x, t, w, \frac{\partial w}{\partial x}) \right)$

5.1.16. Other Equations

5.2. Equations with Exponential Nonlinearities

5.2.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b_0 + b_1 e^{\lambda w} + b_2 e^{2\lambda w}$

5.2.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + f(w)$

5.2.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(w)$

5.2.4. Other Equations Explicitly Independent of x and t

5.2.5. Equations Explicitly Dependent on x and/or t

5.3. Equations with Hyperbolic Nonlinearities

5.3.1. Equations Involving Hyperbolic Cosine

5.3.2. Equations Involving Hyperbolic Sine

5.3.3. Equations Involving Hyperbolic Tangent

5.3.4. Equations Involving Hyperbolic Cotangent

5.4. Equations with Logarithmic Nonlinearities

5.4.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$

5.4.2. Other Equations

5.5. Equations with Trigonometric Nonlinearities

5.5.1. Equations Involving Cosine

5.5.2. Equations Involving Sine

5.5.3. Equations Involving Tangent

5.5.4. Equations Involving Cotangent

5.5.5. Equations Involving Inverse Trigonometric Functions

5.6. Equations Involving Arbitrary Functions

5.6.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w)$

5.6.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, \frac{\partial w}{\partial x}) + g(x, t, w)$
5.6.3. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$ 286
5.6.4. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b (\frac{\partial w}{\partial x})^2 + f(x, t, w)$ 290
5.6.5. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + b (\frac{\partial w}{\partial x})^2 + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$ 293
5.6.6. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \left(\frac{\partial w}{\partial x} \right)^2 + g(x, t, w) \frac{\partial w}{\partial x} + h(x, t, w)$ 294
5.6.7. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial x})$ 298
5.6.8. Equations of the Form $\frac{\partial w}{\partial t} = f(x, t) \frac{\partial w}{\partial x} + g(x, t, w, \frac{\partial w}{\partial x})$ 299
5.6.9. Equations of the Form $\frac{\partial w}{\partial t} = a w \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$ 303
5.6.10. Equations of the Form $\frac{\partial w}{\partial t} = (aw + b) \frac{\partial^2 w}{\partial x^2} + f(x, t, w) (\frac{\partial w}{\partial x})^2 + g(x, t, w) \frac{\partial w}{\partial x} + h(x, t, w)$ 306
5.6.11. Equations of the Form $\frac{\partial w}{\partial t} = a w m \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w)$ 308
5.6.12. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial w}{\partial x} \left(w \frac{\partial w}{\partial x} \right) + f(x, t) \frac{\partial w}{\partial x} + g(x, t, w)$ 311
5.6.13. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial w}{\partial x} \left(w^m \frac{\partial w}{\partial x} \right) + f(x, t) \frac{\partial w}{\partial x} + g(x, t, w)$ 312
5.6.14. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + f(x, t, w)$ 316
5.6.15. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + g(x, t, w, \frac{\partial w}{\partial x})$ 318
5.6.16. Equations of the Form $\frac{\partial w}{\partial t} = f(x, w) \frac{\partial^2 w}{\partial x^2}$ 327
5.6.17. Equations of the Form $\frac{\partial w}{\partial t} = f(x, t, w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x})$ 329
5.6.18. Equations of the Form $\frac{\partial w}{\partial t} = f(x, t, w, \frac{\partial w}{\partial x}) \frac{\partial w}{\partial x} + g(x, t, w, \frac{\partial w}{\partial x})$ 339
5.6.20. Nonlinear Equations of the Thermal (Diffusion) Boundary Layer 346
5.7. Nonlinear Schrödinger Equations and Related Equations 348
5.7.1. Equations of the Form $i \frac{\partial w}{\partial t} + \frac{\partial^2 w}{\partial x^2} + f(|w|) w = 0$ Involving Arbitrary Parameters 348
5.7.2. Equations of the Form $i \frac{\partial w}{\partial t} + \frac{1}{x^n} \frac{\partial}{\partial x} \left(x^n \frac{\partial w}{\partial x} \right) + f(|w|) w = 0$ Involving Arbitrary Parameters 352
5.7.3. Other Equations Involving Arbitrary Parameters 354
5.7.4. Equations with Cubic Nonlinearities Involving Arbitrary Functions 355
5.7.5. Equations of General Form Involving Arbitrary Functions of a Single Argument 358
5.7.6. Equations of General Form Involving Arbitrary Functions of Two Arguments 362

6. Second-Order Parabolic Equations with Two or More Space Variables 367
6.1. Equations with Two Space Variables Involving Power-Law Nonlinearities 367
6.1.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + b \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + a w^p$ 367
6.1.2. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(w^k \frac{\partial w}{\partial y} \right)$ 368
6.1.3. Equations of the Form $\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(w)$ 374
6.1.4. Other Equations 377
6.2. Equations with Two Space Variables Involving Exponential Nonlinearities 384
6.2.1. Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(e^{\lambda w} \frac{\partial w}{\partial y} \right) + f(w)$ 385
6.3. Other Equations with Two Space Variables Involving Arbitrary Parameters ... 388
6.3.1. Equations with Logarithmic Nonlinearities ... 388
6.3.2. Equations with Trigonometrical Nonlinearities .. 389

6.4. Equations Involving Arbitrary Functions ... 390
6.4.1. Heat and Mass Transfer Equations in Quiescent or Moving Media with Chemical Reactions 390
6.4.2. Equations of the Form \(\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w) \) ... 392
6.4.3. Equations of the Form \(\frac{\partial w}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(t, w) \) ... 394
6.4.4. Other Equations Linear in the Highest Derivatives .. 398
6.4.5. Nonlinear Diffusion Boundary Layer Equations .. 402
6.4.6. Equations Nonlinear in the Highest Derivatives .. 404

6.5. Equations with Three or More Space Variables .. 406
6.5.1. Equations of Mass Transfer in Quiescent or Moving Media with Chemical Reactions 406
6.5.2. Heat Equations with Power-Law or Exponential Temperature-Dependent Thermal Diffusivity 409
6.5.3. Equations of Heat and Mass Transfer in Anisotropic Media .. 412
6.5.4. Other Equations with Three Space Variables ... 414
6.5.5. Equations with \(n \) Space Variables.. 417

6.6. Nonlinear Schrödinger Equations .. 425
6.6.1. Two-Dimensional Equations ... 425
6.6.2. Three and \(n \)-Dimensional Equations .. 428

7. Second-Order Hyperbolic Equations with One Space Variable .. 433
7.1. Equations with Power-Law Nonlinearities ... 433
7.1.1. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + aw + bw^n + cw^{2n-1} \) ... 433
7.1.2. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + f(x, t, w) \) ... 436
7.1.3. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + f(x, t, w, \frac{\partial u}{\partial x}) \) ... 439
7.1.4. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = f(x, \frac{\partial u}{\partial x}, g(x, t, w, \frac{\partial u}{\partial x}) \) ... 442
7.1.5. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = aw^n \frac{\partial^2 u}{\partial x^2} + g(x, t, w, \frac{\partial u}{\partial x}) \) ... 447
7.1.6. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial u}{\partial x} (w^n \frac{\partial u}{\partial x}) + f(x, w) \) ... 450
7.1.7. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial u}{\partial x} (w^n \frac{\partial u}{\partial x}) + bw^k \) ... 454
7.1.8. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial u}{\partial x} (w^n \frac{\partial u}{\partial x}) + b_1 w^{k_1} + b_2 w^{k_2} + b_3 w^{k_3} \) ... 458
7.1.9. Other Equations .. 460

7.2. Equations with Exponential Nonlinearities ... 469
7.2.1. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + be^{\gamma w} + ce^{\gamma w} \) ... 469
7.2.2. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + f(x, t, w) \) ... 472
7.2.3. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} = f(x) \frac{\partial^2 u}{\partial x^2} + g(x, t, w, \frac{\partial u}{\partial x}) \) ... 475
7.2.4. Other Equations .. 480

7.3. Other Equations Involving Arbitrary Parameters ... 485
7.3.1. Equations with Hyperbolic Nonlinearities .. 485
7.3.2. Equations with Logarithmic Nonlinearities .. 486
7.3.3. Sine-Gordon Equation and Other Equations with Trigonometric Nonlinearities 490
7.3.4. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} + a \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial u}{\partial x} \right] \) ... 494
7.3.5. Equations of the Form \(\frac{\partial^2 u}{\partial t^2} + f(w) \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[g(w) \frac{\partial u}{\partial x} \right] \) ... 496
7.4. Equations Involving Arbitrary Functions

7.4.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w) \) 499

7.4.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^2 w}{\partial x^2} + f(x, t, w, \frac{\partial w}{\partial t}) \) 505

7.4.3. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = f(x) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x}) \) 511

7.4.4. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = f(w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x}) \) 517

7.4.5. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = f(x, w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x}) \) 526

7.4.6. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = f(t, w) \frac{\partial^2 w}{\partial x^2} + g(x, t, w, \frac{\partial w}{\partial x}) \) 529

7.4.7. Other Equations Linear in the Highest Derivatives 530

7.5. Equations of the Form \(\frac{\partial^2 w}{\partial x \partial y} = F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}) \) 540

7.5.1. Equations Involving Arbitrary Parameters of the Form \(\frac{\partial^2 w}{\partial x \partial y} = f(w) \) 540

7.5.2. Other Equations Involving Arbitrary Parameters 544

7.5.3. Equations Involving Arbitrary Functions 546

8. Second-Order Hyperbolic Equations with Two or More Space Variables 553

8.1. Equations with Two Space Variables Involving Power-Law Nonlinearities 553

8.1.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} [f(x) \frac{\partial w}{\partial x}] + \frac{\partial}{\partial y} [g(y) \frac{\partial w}{\partial y}] + \alpha w^p \) 553

8.1.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(w^k \frac{\partial w}{\partial y} \right) \) 555

8.1.3. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} [f(w) \frac{\partial w}{\partial x}] + \frac{\partial}{\partial y} [g(w) \frac{\partial w}{\partial y}] \) 565

8.1.4. Other Equations 570

8.2. Equations with Two Space Variables Involving Exponential Nonlinearities 574

8.2.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \alpha \lambda^w \) 574

8.2.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(e^{\beta w} \frac{\partial w}{\partial x} \right) + b \frac{\partial}{\partial y} \left(e^{\gamma w} \frac{\partial w}{\partial y} \right) \) 577

8.2.3. Other Equations 582

8.3. Nonlinear Telegraph Equations with Two Space Variables 583

8.3.1. Equations Involving Power-Law Nonlinearities 583

8.3.2. Equations Involving Exponential Nonlinearities 587

8.4. Equations with Two Space Variables Involving Arbitrary Functions 589

8.4.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + h(w) \) 589

8.4.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + h(w) \) 593

8.4.3. Other Equations 599

8.5. Equations with Three Space Variables Involving Arbitrary Parameters 604

8.5.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] + \alpha \omega^p \) 604

8.5.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] + \alpha \epsilon^\lambda w \) 606

8.5.3. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(w^m \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(w^k \frac{\partial w}{\partial z} \right) + \alpha \epsilon^{\lambda w} \) 608

8.5.4. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left(e^{\lambda w} \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(e^{\gamma w} \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(e^{\beta w} \frac{\partial w}{\partial z} \right) + \alpha \epsilon^{\lambda w} \) 615

8.6. Equations with Three or More Space Variables Involving Arbitrary Functions 624

8.6.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial x} \left[f_1(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[f_3(z) \frac{\partial w}{\partial z} \right] + g(w) \) 624
8.6.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} = \frac{\partial}{\partial x} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] + g(w)$.. 629

8.6.3. Other Equations ... 637

9. Second-Order Elliptic Equations with Two Space Variables 641

9.1. Equations with Power-Law Nonlinearities 641

9.1.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = aw + bw^n + cw^{2n-1}$ 641

9.1.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = f(x, y, w)$.. 644

9.1.3. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + a \frac{\partial^2 w}{\partial y^2} = F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y})$ 645

9.1.4. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f_1(x, y) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(x, y) \frac{\partial w}{\partial y} \right] = g(w)$ 646

9.1.5. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] = g(w)$ 648

9.1.6. Other Equations Involving Arbitrary Parameters 654

9.2. Equations with Exponential Nonlinearities 662

9.2.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = a + be^{\beta w} + ce^{\gamma w}$ 662

9.2.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = f(x, y, w)$.. 664

9.2.3. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f_1(x, y) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(x, y) \frac{\partial w}{\partial y} \right] = g(w)$ 665

9.2.4. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f_1(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(w) \frac{\partial w}{\partial y} \right] = g(w)$ 668

9.2.5. Other Equations Involving Arbitrary Parameters 671

9.3. Equations Involving Other Nonlinearities 675

9.3.1. Equations with Hyperbolic Nonlinearities 675

9.3.2. Equations with Logarithmic Nonlinearities 677

9.3.3. Equations with Trigonometric Nonlinearities 680

9.4. Equations Involving Arbitrary Functions 682

9.4.1. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = F(x, y, w)$.. 682

9.4.2. Equations of the Form $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y})$ 690

9.4.3. Heat and Mass Transfer Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] = h(w)$ 697

9.4.4. Equations of the Form $\frac{\partial^2 w}{\partial x^2} \left[f(x, y, w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(x, y, w) \frac{\partial w}{\partial y} \right] = h(x, y, w)$ 699

9.4.5. Other Equations ... 707

10. Second-Order Elliptic Equations with Three or More Space Variables 713

10.1. Equations with Three Space Variables Involving Power-Law Nonlinearities .. 713

10.1.1. Equations of the Form $\frac{\partial}{\partial x} \left[f(z) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] = aw + bw^n + cw^{2n-1}$ 713

10.1.2. Equations of the Form $\frac{\partial}{\partial x} \left[f(w) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(w) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(w) \frac{\partial w}{\partial z} \right] = 0$ 716

10.2. Equations with Three Space Variables Involving Exponential Nonlinearities .. 722

10.2.1. Equations of the Form $\frac{\partial}{\partial x} \left[f(z) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[g(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[h(z) \frac{\partial w}{\partial z} \right] = ae^{\lambda w}$ 722

10.2.2. Equations of the Form $\frac{\partial}{\partial x} \left(e^{\lambda_1 w} \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(e^{\lambda_2 w} \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial z} \left(e^{\lambda_3 w} \frac{\partial w}{\partial z} \right) = be^{\beta w}$ 725

10.3. Three-Dimensional Equations Involving Arbitrary Functions 730

10.3.1. Heat and Mass Transfer Equations of the Form $\frac{\partial}{\partial x} \left[f_1(x) \frac{\partial w}{\partial x} \right] + \frac{\partial}{\partial y} \left[f_2(y) \frac{\partial w}{\partial y} \right] + \frac{\partial}{\partial z} \left[f_3(z) \frac{\partial w}{\partial z} \right] = g(w)$ 730

10.3.2. Heat and Mass Transfer Equations with Complicating Factors 734
10.3.3. Other Equations .. 737

10.4. Equations with \(n \) Independent Variables ... 739

10.4.1. Equations of the Form
\[\frac{\partial}{\partial x_1} \left[f_1(x_1) \frac{\partial w}{\partial x_1} \right] + \cdots + \frac{\partial}{\partial x_n} \left[f_n(x_n) \frac{\partial w}{\partial x_n} \right] = g(x_1, \ldots, x_n, w) \] 739

10.4.2. Other Equations .. 742

11. Second-Order Equations Involving Mixed Derivatives and Some Other Equations ... 745

11.1. Equations Linear in the Mixed Derivative ... 745

11.1.1. Calogero Equation and Related Equations .. 745

11.1.2. Khokhlov–Zabolotskaya and Related Equations 749

11.1.3. Equation of Unsteady Transonic Gas Flows 756

11.1.4. Equations of the Form
\[\frac{\partial w}{\partial y} \frac{\partial^2 w}{\partial x \partial y} - \frac{\partial w}{\partial x} \frac{\partial^2 w}{\partial y^2} = F(x, y, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}) \] 760

11.1.5. Other Equations with Two Independent Variables 762

11.1.6. Other Equations with Three and More Independent Variables 770

11.2. Equations Quadratic in the Highest Derivatives 772

11.2.1. Equations of the Form
\[\frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x, y) \] 772

11.2.2. Monge–Ampère Equation
\[\left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x, y) \] 774

11.2.3. Equations of the Form
\[\left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} = F(x, y, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}) \] 787

11.2.4. Equations of the Form
\[\left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 - f(x, y) \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 w}{\partial y^2} + g(x, y) \] 794

11.2.5. Other Equations with Two Independent Variables 798

11.2.6. Plebański Heavenly Equations .. 802

11.3. Bellman Type Equations and Related Equations 805

11.3.1. Equations with Quadratic Nonlinearities .. 805

11.3.2. Equations with Power-Law Nonlinearities .. 808

12. Second-Order Equations of General Form ... 811

12.1. Equations Involving the First Derivative in \(t \) 811

12.1.1. Equations of the Form
\[\frac{\partial w}{\partial t} = F(w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) \] 811

12.1.2. Equations of the Form
\[\frac{\partial w}{\partial t} = F(t, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) \] 820

12.1.3. Equations of the Form
\[\frac{\partial w}{\partial t} = F(x, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) \] 825

12.1.4. Equations of the Form
\[\frac{\partial w}{\partial t} = F(x, t, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) \] 830

12.1.5. Equations of the Form
\[F(x, t, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial t}, \frac{\partial^2 w}{\partial x^2}) = 0 \] 836

12.1.6. Equations with Three Independent Variables 838

12.2. Equations Involving Two or More Second Derivatives 839

12.2.1. Equations of the Form
\[\frac{\partial^2 w}{\partial t^2} = F(w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}) \] 839

12.2.2. Equations of the Form
\[\frac{\partial^2 w}{\partial t^2} = F(x, t, w, \frac{\partial w}{\partial x}, \frac{\partial w}{\partial t}, \frac{\partial^2 w}{\partial x^2}) \] 843

12.2.3. Equations Linear in the Mixed Derivative .. 847

12.2.4. Equations with Two Independent Variables, Nonlinear in Two or More Highest Derivatives ... 849

12.2.5. Equations with \(n \) Independent Variables .. 853
Contents

13. Third-Order Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.1</td>
<td>Equations Involving the First Derivative in t</td>
<td>857</td>
</tr>
<tr>
<td>13.1.1.1</td>
<td>Korteweg–de Vries Equation $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + bw \frac{\partial w}{\partial x} = 0$</td>
<td>857</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Cylindrical, Spherical, and Modified Korteweg–de Vries Equations</td>
<td>866</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Generalized Korteweg–de Vries Equation $\frac{\partial w}{\partial t} + a \frac{\partial^3 w}{\partial x^3} + f(w) \frac{\partial w}{\partial x} = 0$</td>
<td>871</td>
</tr>
<tr>
<td>13.1.4</td>
<td>Equations Reducible to the Korteweg–de Vries Equation</td>
<td>875</td>
</tr>
<tr>
<td>13.1.5</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3} + F(w, \frac{\partial w}{\partial x}) = 0$</td>
<td>879</td>
</tr>
<tr>
<td>13.1.6</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3} + F(x, t, w, \frac{\partial w}{\partial x}) = 0$</td>
<td>882</td>
</tr>
<tr>
<td>13.1.7</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} = F(x, w, \frac{\partial w}{\partial x}, \frac{\partial^2 w}{\partial x^2}, \frac{\partial^3 w}{\partial x^3})$</td>
<td>884</td>
</tr>
<tr>
<td>13.2</td>
<td>Equations Involving the Second Derivative in t</td>
<td>896</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Equations with Quadratic Nonlinearities</td>
<td>896</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Other Equations</td>
<td>900</td>
</tr>
<tr>
<td>13.3</td>
<td>Hydrodynamic Boundary Layer Equations</td>
<td>903</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Steady Hydrodynamic Boundary Layer Equations for a Newtonian Fluid</td>
<td>903</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Steady Boundary Layer Equations for Non-Newtonian Fluids</td>
<td>911</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Unsteady Boundary Layer Equations for a Newtonian Fluid</td>
<td>917</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Unsteady Boundary Layer Equations for Non-Newtonian Fluids</td>
<td>930</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Related Equations</td>
<td>935</td>
</tr>
<tr>
<td>13.4</td>
<td>Equations of Motion of Ideal Fluid (Euler Equations)</td>
<td>938</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Stationary Equations</td>
<td>938</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Nonstationary Equations</td>
<td>942</td>
</tr>
<tr>
<td>13.5</td>
<td>Other Third-Order Nonlinear Equations</td>
<td>949</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Equations Involving Second-Order Mixed Derivatives</td>
<td>949</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Equations Involving Third-Order Mixed Derivatives</td>
<td>958</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Other Equations</td>
<td>973</td>
</tr>
</tbody>
</table>

14. Fourth-Order Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Equations Involving the First Derivative in t</td>
<td>977</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^4 w}{\partial x^4} + F(x, t, w, \frac{\partial w}{\partial x})$</td>
<td>977</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Other Equations</td>
<td>982</td>
</tr>
<tr>
<td>14.2</td>
<td>Equations Involving the Second Derivative in t</td>
<td>987</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Boussinesq Equation and Its Modifications</td>
<td>987</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Other Equations with Quadratic Nonlinearities</td>
<td>993</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Other Equations</td>
<td>998</td>
</tr>
<tr>
<td>14.3</td>
<td>Equations Involving Mixed Derivatives</td>
<td>1000</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Kadomtsev–Petviashvili Equation and Related Equations</td>
<td>1000</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Stationary Hydrodynamic Equations (Navier–Stokes Equations)</td>
<td>1003</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Nonstationary Hydrodynamic Equations (Navier–Stokes Equations)</td>
<td>1013</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Other Equations</td>
<td>1028</td>
</tr>
</tbody>
</table>

15. Equations of Higher Orders

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Equations Involving the First Derivative in t and Linear in the Highest Derivative</td>
<td>1031</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Fifth-Order Equations</td>
<td>1031</td>
</tr>
<tr>
<td>15.1.2</td>
<td>Some Equations with Sixth- to Ninth-Order</td>
<td>1039</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + f(x, t, w)$</td>
<td>1043</td>
</tr>
<tr>
<td>15.1.4</td>
<td>Equations of the Form $\frac{\partial w}{\partial t} = a \frac{\partial^n w}{\partial x^n} + f(w) \frac{\partial w}{\partial x}$</td>
<td>1044</td>
</tr>
</tbody>
</table>
15.1.5. Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^m w}{\partial x^m} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w) \) \hspace{1cm} 1047
15.1.6. Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^m w}{\partial x^m} + F(x, t, w, \frac{\partial w}{\partial x}) \) \hspace{1cm} 1051
15.1.7. Equations of the Form \(\frac{\partial w}{\partial t} = a \frac{\partial^m w}{\partial x^m} + F(x, t, w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^{m-1} w}{\partial x^{m-1}}) \) \hspace{1cm} 1057
15.1.8. Equations of the Form \(\frac{\partial w}{\partial t} = aw \frac{\partial^m w}{\partial x^m} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w) \) \hspace{1cm} 1059
15.1.9. Other Equations Involving Arbitrary Parameters and/or Arbitrary Functions \hspace{1cm} 1062
15.1.10. Nonlinear Equations Involving Arbitrary Linear Differential Operators \hspace{1cm} 1065
15.1.11. Equations of the Burgers and the Korteweg–de Vries Hierarchies and Related Equations \hspace{1cm} 1067

15.2. General Form Equations Involving the First Derivative in t
15.2.1. Equations of the Form \(\frac{\partial w}{\partial t} = F(w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^m w}{\partial x^m}) \) \hspace{1cm} 1070
15.2.2. Equations of the Form \(\frac{\partial w}{\partial t} = F(t, w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^m w}{\partial x^m}) \) \hspace{1cm} 1077
15.2.3. Equations of the Form \(\frac{\partial w}{\partial t} = F(x, w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^m w}{\partial x^m}) \) \hspace{1cm} 1079
15.2.4. Equations of the Form \(\frac{\partial w}{\partial t} = F(x, t, w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^m w}{\partial x^m}) \) \hspace{1cm} 1084

15.3. Equations Involving the Second Derivative in t
15.3.1. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^m w}{\partial x^m} + f(x, t, w) \) \hspace{1cm} 1088
15.3.2. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^m w}{\partial x^m} + F(x, t, w, \frac{\partial w}{\partial x}) \) \hspace{1cm} 1089
15.3.3. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = a \frac{\partial^m w}{\partial x^m} + F(x, t, w, \frac{\partial w}{\partial x}, \ldots, \frac{\partial^{m-1} w}{\partial x^{m-1}}) \) \hspace{1cm} 1094
15.3.4. Equations of the Form \(\frac{\partial^2 w}{\partial t^2} = aw \frac{\partial^m w}{\partial x^m} + f(x, t, w) \frac{\partial w}{\partial x} + g(x, t, w) \) \hspace{1cm} 1098
15.3.5. Other Equations Involving Arbitrary Functions \hspace{1cm} 1099
15.3.6. Equations Involving Arbitrary Differential Operators \hspace{1cm} 1101

15.4. Other Equations \hspace{1cm} 1103
15.4.1. Equations Involving Mixed Derivatives \hspace{1cm} 1103
15.4.2. Equations Involving \(\frac{\partial^m w}{\partial x^m} \) and \(\frac{\partial^m w}{\partial y^m} \) \hspace{1cm} 1110

16. Systems of Two First-Order Partial Differential Equations \hspace{1cm} 1115
16.1. Systems of the Form \(\frac{\partial u}{\partial x} = F(u, w), \frac{\partial w}{\partial t} = G(u, w) \) \hspace{1cm} 1115
16.1.1. Systems Involving Arbitrary Parameters \hspace{1cm} 1115
16.1.2. Systems Involving Arbitrary Functions \hspace{1cm} 1117
16.2. Other Systems of Two Equations \hspace{1cm} 1122
16.2.1. Gas Dynamic Type Systems Linearizable with the Hodograph Transformation \hspace{1cm} 1122
16.2.2. Other Systems of Equations \hspace{1cm} 1130

17. Systems of Two Parabolic Equations \hspace{1cm} 1133
17.1. Systems of the Form \(\frac{\partial u}{\partial t} = a \frac{\partial^m u}{\partial x^m} + F(u, w), \frac{\partial w}{\partial t} = b \frac{\partial^m w}{\partial x^m} + G(u, w) \) \hspace{1cm} 1133
17.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns \hspace{1cm} 1133
17.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns \hspace{1cm} 1137
17.1.3. Arbitrary Functions Depend on the Product of Powers of the Unknowns \hspace{1cm} 1145
17.1.4. Arbitrary Functions Depend on Sum or Difference of Squares of the Unknowns \hspace{1cm} 1146
17.1.5. Arbitrary Functions Depend on the Unknowns in a Complex Way \hspace{1cm} 1148
17.1.6. Some Systems Depending on Arbitrary Parameters \hspace{1cm} 1150
17.2. Systems of the Form \(\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} + \frac{x^n \partial u}{\partial x} + F(u, w), \frac{\partial w}{\partial t} = b \frac{\partial^2 w}{\partial x^2} + G(u, w) \) .. 1156

17.2.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns 1157
17.2.2. Arbitrary Functions Depend on the Ratio of the Unknowns 1159
17.2.3. Arbitrary Functions Depend on the Product of Powers of the Unknowns 1162
17.2.4. Arbitrary Functions Depend on Sum or Difference of Squares of the
Unknowns ... 1163
17.2.5. Arbitrary Functions Have Different Arguments 1164

17.3. Other Systems of Two Parabolic Equations 1165
17.3.1. Second-Order Equations Involving Real Functions of Real Variables 1165
17.3.2. Second-Order Nonlinear Equations of Laser Systems 1170
17.3.3. Systems Involving Third-Order Evolution Equations 1172

18. Systems of Two Second-Order Klein–Gordon Type Hyperbolic Equations . 1173

18.1. Systems of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} + \frac{x^n \partial u}{\partial x} + F(u, w), \frac{\partial^2 w}{\partial t^2} = b \frac{\partial^2 w}{\partial x^2} + G(u, w) \) 1173
18.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns 1173
18.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns 1175
18.1.3. Other Systems ... 1177

18.2. Systems of the Form \(\frac{\partial^2 u}{\partial t^2} = a \frac{\partial^2 u}{\partial x^2} + \frac{x^n \partial u}{\partial x} + F(u, w), \frac{\partial^2 w}{\partial t^2} = b \frac{\partial^2 w}{\partial x^2} + G(u, w) \) 1178
18.2.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns 1178
18.2.2. Arbitrary Functions Depend on the Ratio of the Unknowns 1181
18.2.3. Other Systems ... 1183

19. Systems of Two Elliptic Equations ... 1185

19.1. Systems of the Form \(\Delta u = F(u, w), \Delta w = G(u, w) \) 1185
19.1.1. Arbitrary Functions Depend on a Linear Combination of the Unknowns 1185
19.1.2. Arbitrary Functions Depend on the Ratio of the Unknowns 1187
19.1.3. Other Systems ... 1189

19.2. Other Systems of Two Second-Order Elliptic Equations 1191
19.3. Von Kármán Equations (Fourth-Order Elliptic Equations) 1192

20. First-Order Hydrodynamic and Other Systems Involving Three or More
Equations ... 1197

20.1. Equations of Motion of Ideal Fluid (Euler Equations) 1197
20.1.1. Euler Equations in Various Coordinate Systems 1197
20.1.2. Two-Dimensional Euler Equations for Incompressible IdealFluid
(Plane Flows) .. 1198
20.1.3. Other Solutions with Two Nonzero Components of the Fluid Velocity 1199
20.1.4. Rotationally Symmetric Motions of Fluid 1200
20.1.5. Euler Equations for Barotropic Gas Flow 1201

20.2. Adiabatic Gas Flow ... 1204
20.2.1. Preliminary Remarks ... 1204
20.2.2. One-Dimensional Case ... 1205
20.2.3. Two-Dimensional Case ... 1215
20.2.4. Three-Dimensional Case ... 1219
20.3. Systems Describing Fluid Flows in the Atmosphere, Seas, and Oceans .. 1223
 20.3.1. Equations of Breezes and Monsoons .. 1223
 20.3.2. Equations of Atmospheric Circulation in the Equatorial Region 1225
 20.3.3. Equations of Dynamic Convection in the Sea 1227
 20.3.4. Equations of Flows in the Baroclinic Layer of the Ocean 1229

20.4. Chromatography Equations ... 1231
 20.4.1. Langmuir Isotherm .. 1231
 20.4.2. Generalized Langmuir Isotherm ... 1233
 20.4.3. Power Isotherm .. 1234
 20.4.4. Exponential Isotherm ... 1235

20.5. Other Hydrodynamic-Type Systems ... 1236
 20.5.1. Hydrodynamic-Type Systems of Diagonal Form 1236
 20.5.2. Hydrodynamic-Type Systems of Nondiagonal Form 1236

20.6. Ideal Plasticity with the von Mises Yield Criterion 1238
 20.6.1. Two-Dimensional Equations. Plane Case ... 1238
 20.6.2. Axisymmetric Case ... 1239
 20.6.3. Three-Dimensional Equations. Steady-State Case 1240
 20.6.4. Dynamic Case. Two-Dimensional Equations 1244

21. Navier–Stokes and Related Equations .. 1247
 21.1. Navier–Stokes Equations .. 1247
 21.1.2. General Properties of the Navier–Stokes Equations 1249
 21.2. Solutions with One Nonzero Component of the Fluid Velocity 1251
 21.2.1. Unidirectional Plane Flows ... 1251
 21.2.2. Unidirectional Flows in Tubes of Various Cross-Sections. External Flow Around a Cylinder .. 1253
 21.2.3. One-Dimensional Rotation Fluid Flows ... 1257
 21.2.4. Purely Radial Fluid Motions ... 1260
 21.3. Solutions with Two Nonzero Components of the Fluid Velocity 1263
 21.3.1. Two-Dimensional Solutions in the Rectangular Cartesian Coordinates (Plane Flows) .. 1263
 21.3.2. Two-Dimensional Solutions in the Cylindrical Coordinates (Plane Flows) .. 1270
 21.3.3. Axisymmetric Fluid Flows .. 1274
 21.3.4. Other Fluid Flows with Two-Nonzero Velocity Components 1282
 21.4. Solutions with Three Nonzero Fluid Velocity Components Dependent on Two Space Variables .. 1285
 21.4.1. Quasi-plane Flows (with the Fluid Velocity Components Independent of z) .. 1285
 21.4.2. Cylindrical and Conical Vortex Flows. Von Kármán-Type Rotationally Symmetric Motions .. 1290
 21.4.3. Rotationally Symmetric Motions of General Form 1297
 21.5. Solutions with Three Nonzero Fluid Velocity Components Dependent on Three Space Variables .. 1302
 21.5.1. Three-Dimensional Stagnation-Point Type Flows 1302
 21.5.2. Solutions with Linear Dependence of the Velocity Components on Two Space Variables. Axial Flows .. 1303
 21.5.3. Solutions with Linear Dependence of the Velocity Components on Two Space Variables. General Analysis .. 1317
21.5.4. Solutions with the Linear Dependence of the Velocity Components on One Space Variable

21.5.5. Other Three-Dimensional Solutions

21.6. Convective Fluid Motions

21.6.1. Equations for Convective Fluid Motions

21.6.2. Steady-State Solutions

21.6.3. Unsteady Solutions

21.7. Boundary Layer Equations (Prandtl Equations)

22. Systems of General Form

22.1. Nonlinear Systems of Two Equations Involving the First Derivatives with Respect to t

22.2. Nonlinear Systems of Two Equations Involving the Second Derivatives with Respect to t

22.3. Other Nonlinear Systems of Two Equations

22.4. Nonlinear Systems of Many Equations Involving the First Derivatives with Respect to t

Part II. Exact Methods for Nonlinear Partial Differential Equations

23. Methods for Solving First-Order Quasilinear Equations

23.1. Characteristic System. General Solution

23.1.1. Equations with Two Independent Variables. General Solution

23.1.2. Quasilinear Equations with n Independent Variables

23.2. Cauchy Problem. Existence and Uniqueness Theorem

23.2.1. Cauchy Problem

23.2.2. Procedure of Solving the Cauchy Problem

23.2.3. Existence and Uniqueness Theorem

23.3. Qualitative Features and Discontinuous Solutions of Quasilinear Equations

23.3.1. Model Equation of Gas Dynamics

23.3.2. Solution of the Cauchy Problem. Rarefaction Wave. Wave “Overturn”

23.3.3. Shock Waves. Jump Conditions

23.3.4. Utilization of Integral Relations for Determining Generalized Solutions

23.3.5. Conservation Laws. Viscosity Solutions

23.3.6. Hopf’s Formula for the Generalized Solution

23.3.7. Problem of Propagation of a Signal

23.4. Quasilinear Equations of General Form

23.4.1. Quasilinear Equations in Conservative Form

23.4.2. Generalized Solution. Jump Condition and Stability Condition

23.4.3. Method for Constructing Stable Generalized Solutions
24. Methods for Solving First-Order Nonlinear Equations ... 1373
 24.1. Solution Methods ... 1373
 24.1.1. Complete, General, and Singular Integrals ... 1373
 24.1.2. Method of Separation of Variables. Equations of Special Form 1374
 24.1.3. Lagrange–Charpit Method ... 1376
 24.1.4. Construction of a Complete Integral with the Aid of Two First Integrals 1377
 24.1.5. Case where the Equation Does Not Depend on u Explicitly 1378
 24.1.6. Hamilton–Jacobi Equation .. 1379
 24.2. Cauchy Problem. Existence and Uniqueness Theorem 1379
 24.2.1. Statement of the Problem. Solution Procedure 1379
 24.2.2. Existence and Uniqueness Theorem ... 1380
 24.2.3. Cauchy Problem for the Hamilton–Jacobi Equation 1380
 24.2.4. Examples of Solving the Cauchy Problem ... 1381
 24.3. Generalized Viscosity Solutions and Their Applications 1382
 24.3.1. Preliminary Remarks .. 1382
 24.3.2. Viscosity Solutions Based on the Use of a Parabolic Equation 1382
 24.3.3. Viscosity Solutions Based on Test Functions and Differential Inequalities ... 1383
 24.3.4. Local Structure of Generalized Viscosity Solutions 1383
 24.3.5. Generalized Classical Method of Characteristics 1385
 24.3.6. Examples of Viscosity (Nonsmooth) Solutions 1386
25. Classification of Second-Order Nonlinear Equations ... 1389
 25.1. Semilinear Equations in Two Independent Variables 1389
 25.1.1. Types of Equations. Characteristic Equation .. 1389
 25.1.2. Canonical Form of Parabolic Equations (Case $b^2 - ac = 0$) 1390
 25.1.3. Canonical Form of Hyperbolic Equations (Case $b^2 - ac > 0$) 1390
 25.1.4. Canonical Form of Elliptic Equations (Case $b^2 - ac < 0$) 1392
 25.2. Nonlinear Equations in Two Independent Variables .. 1392
 25.2.1. Nonlinear Equations of General Form ... 1392
 25.2.2. Quasilinear Equations ... 1393
26. Transformations of Equations of Mathematical Physics .. 1395
 26.1. Point Transformations: Overview and Examples .. 1395
 26.1.1. General Form of Point Transformations .. 1395
 26.1.2. Linear Transformations ... 1396
 26.1.3. Simple Nonlinear Point Transformations ... 1396
 26.2. Hodograph Transformations (Special Point Transformations) 1397
 26.2.1. One PDE: One of the Independent Variables Is Taken to Be the Dependent One ... 1397
 26.2.2. One PDE: Method of Conversion to an Equivalent System of Equations 1398
 26.2.3. System of Two PDEs: One of the Independent Variables Is Taken to Be the Dependent One .. 1402
 26.2.4. System of Two PDEs: Both of the Independent Variables Are Taken to Be the Dependent Ones 1402
 26.3. Contact Transformations. Legendre and Euler Transformations 1403
 26.3.1. Preliminary Remarks. Contact Transformations for Ordinary Differential Equations ... 1403
 26.3.2. General Form of Contact Transformations for Partial Differential Equations ... 1405
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.3.3</td>
<td>Legendre Transformation</td>
<td>1406</td>
</tr>
<tr>
<td>26.3.4</td>
<td>Euler Transformation</td>
<td>1407</td>
</tr>
<tr>
<td>26.3.5</td>
<td>Legendre Transformation with Many Variables</td>
<td>1408</td>
</tr>
<tr>
<td>26.4</td>
<td>Differential Substitutions. Von Mises Transformation</td>
<td>1409</td>
</tr>
<tr>
<td>26.4.1</td>
<td>Differential Substitutions</td>
<td>1409</td>
</tr>
<tr>
<td>26.4.2</td>
<td>Von Mises Transformation</td>
<td>1410</td>
</tr>
<tr>
<td>26.5</td>
<td>Bäcklund Transformations. RF Pairs</td>
<td>1413</td>
</tr>
<tr>
<td>26.5.1</td>
<td>Bäcklund Transformations for Second-Order Equations</td>
<td>1413</td>
</tr>
<tr>
<td>26.5.2</td>
<td>RF Pairs and Their Use for Constructing Bäcklund Transformations</td>
<td>1415</td>
</tr>
<tr>
<td>26.6</td>
<td>Some Other Transformations</td>
<td>1422</td>
</tr>
<tr>
<td>26.6.1</td>
<td>Crocco Transformation. Order Reduction of Hydrodynamic Type Equations</td>
<td>1422</td>
</tr>
<tr>
<td>26.6.2</td>
<td>Transformations Based on Conservation Laws</td>
<td>1425</td>
</tr>
<tr>
<td>27.</td>
<td>Traveling-Wave Solutions and Self-Similar Solutions</td>
<td>1429</td>
</tr>
<tr>
<td>27.1</td>
<td>Preliminary Remarks</td>
<td>1429</td>
</tr>
<tr>
<td>27.2</td>
<td>Traveling-Wave Solutions. Invariance of Equations under Translations</td>
<td>1429</td>
</tr>
<tr>
<td>27.2.1</td>
<td>General Form of Traveling-Wave Solutions</td>
<td>1429</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Invariance of Solutions and Equations under Translation Transforma¬</td>
<td>1430</td>
</tr>
<tr>
<td>27.2.3</td>
<td>Functional Equation Describing Traveling-Wave Solutions</td>
<td>1431</td>
</tr>
<tr>
<td>27.3</td>
<td>Self-Similar Solutions. Invariance of Equations Under Scaling Transfo</td>
<td>1431</td>
</tr>
<tr>
<td>27.3.1</td>
<td>General Form of Self-Similar Solutions. Similarity Method</td>
<td>1431</td>
</tr>
<tr>
<td>27.3.2</td>
<td>Examples of Self-Similar Solutions to Mathematical Physics Equations</td>
<td>1432</td>
</tr>
<tr>
<td>27.3.3</td>
<td>More General Approach Based on Solving a Functional Equation. Some</td>
<td>1434</td>
</tr>
<tr>
<td></td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>27.3.4</td>
<td>Generalized Self-Similar Solutions</td>
<td>1436</td>
</tr>
<tr>
<td>28.1</td>
<td>Introduction. Symmetries. General Scheme of Using Invariants for Solv</td>
<td>1439</td>
</tr>
<tr>
<td>28.1.1</td>
<td>Symmetries. Transformations Preserving the Form of Equations. Invari</td>
<td>1439</td>
</tr>
<tr>
<td>28.1.2</td>
<td>General Scheme of Using Invariants for Solving Mathematical Equations</td>
<td>1440</td>
</tr>
<tr>
<td>28.2</td>
<td>Algebraic Equations and Systems of Equations</td>
<td>1441</td>
</tr>
<tr>
<td>28.2.1</td>
<td>Algebraic Equations with Even Powers</td>
<td>1441</td>
</tr>
<tr>
<td>28.2.2</td>
<td>Reciprocal Equations</td>
<td>1442</td>
</tr>
<tr>
<td>28.2.3</td>
<td>Systems of Algebraic Equations Symmetric with Respect to Permutation</td>
<td>1444</td>
</tr>
<tr>
<td></td>
<td>of Arguments</td>
<td></td>
</tr>
<tr>
<td>28.3</td>
<td>Ordinary Differential Equations</td>
<td>1445</td>
</tr>
<tr>
<td>28.3.1</td>
<td>Transformations Preserving the Form of Equations. Invariants</td>
<td>1445</td>
</tr>
<tr>
<td>28.3.2</td>
<td>Order Reduction Procedure for Equations with (n \geq 2) (Reduction to Solvable Form with (n = 1))</td>
<td>1446</td>
</tr>
<tr>
<td>28.3.3</td>
<td>Simple Transformations. Invariant Determination Procedure</td>
<td>1446</td>
</tr>
<tr>
<td>28.3.4</td>
<td>Analysis of Some Ordinary Differential Equations. Useful Remarks</td>
<td>1447</td>
</tr>
</tbody>
</table>
28.4. Partial Differential Equations .. 1450
 28.4.1. Transformations Preserving the Form of Equations. Invariants 1450
 28.4.2. Procedure for Constructing Exact Solutions 1450
 28.4.3. Examples of Constructing Invariant Solutions to Nonlinear Partial
 Differential Equations ... 1451
 28.4.4. Simple Inverse Problems (Determination of the Form of Equations
 from Their Properties) ... 1455
28.5. General Conclusions and Remarks ... 1457

29. Method of Generalized Separation of Variables 1459
 29.1. Exact Solutions with Simple Separation of Variables 1459
 29.1.1. Multiplicative and Additive Separable Solutions 1459
 29.1.2. Simple Separation of Variables in Nonlinear Partial
 Differential Equations .. 1459
 29.1.3. Complex Separation of Variables in Nonlinear Partial
 Differential Equations .. 1462
 29.2. Structure of Generalized Separable Solutions 1464
 29.2.1. General Form of Solutions. Classes of Nonlinear Equations Considered 1464
 29.2.2. General Form of Functional Differential Equations 1464
 29.3. Simplified Scheme for Constructing Generalized Separable Solutions 1465
 29.3.1. Description of the Simplified Scheme for Constructing Solutions Based on Presetting One System of Coordinate Functions 1465
 29.3.2. Examples of Finding Exact Solutions of Second- and Third-Order
 Equations .. 1465
 29.4. Solution of Functional Differential Equations by Differentiation 1467
 29.4.1. Description of the Method 1467
 29.4.2. Examples of Constructing Exact Generalized Separable Solutions .. 1467
 29.5. Solution of Functional-Differential Equations by Splitting 1471
 29.5.1. Preliminary Remarks. Description of the Method 1471
 29.5.2. Solutions of Simple Functional Equations and Their Application ... 1472
 29.6. Titov–Galaktionov Method ... 1477
 29.6.1. Method Description. Linear Subspaces Invariant under a Nonlinear Operator .. 1477
 29.6.2. Some Generalizations .. 1479
 29.6.3. Finding Linear Subspaces Invariant Under a Given Nonlinear Operator .. 1480
 29.6.4. Generalizations to Pseudo-Differential Equations 1483

30. Method of Functional Separation of Variables 1487
 30.1. Structure of Functional Separable Solutions. Solution by Reduction to
 Equations with Quadratic Nonlinearities 1487
 30.1.1. Structure of Functional Separable Solutions 1487
 30.1.2. Solution by Reduction to Equations with Quadratic (or Power)
 Nonlinearities .. 1487
 30.2. Special Functional Separable Solutions. Generalized Traveling-Wave
 Solutions ... 1487
 30.2.1. Special Functional Separable and Generalized Traveling-Wave
 Solutions ... 1487
 30.2.2. General Scheme for Constructing Generalized Traveling-Wave
 Solutions ... 1489
30.3. Differentiation Method .. 1492
 30.3.1. Basic Ideas of the Method. Reduction to a Standard Equation 1492
 30.3.2. Examples of Constructing Functional Separable Solutions 1492

30.4. Splitting Method. Solutions of Some Nonlinear Functional Equations and
Their Applications ... 1496
 30.4.1. Splitting Method. Reduction to a Standard Functional Equation 1496
 30.4.2. Three-Argument Functional Equations of Special Form 1497
 30.4.3. Functional Equation \(f(t) + g(x) = Q(z) \), with \(z = \phi(x) + \psi(t) \) 1498
 30.4.4. Functional Equation \(f(t) + g(x) + h(x)Q(z) + R(z) = 0 \), with
 \(z = \phi(x) + \psi(t) \) .. 1498
 30.4.5. Functional Equation \(f(t) + g(x)Q(z) + h(x)R(z) = 0 \), with \(z = \phi(x) + \psi(t) \) 1500
 30.4.6. Equation \(f_1(x) + f_2(y) + g_1(x)P(z) + g_2(y)Q(z) + R(z) = 0 \),
 \(z = \phi(x) + \psi(y) \) .. 1501

31. Direct Method of Symmetry Reductions of Nonlinear Equations 1503
 31.1. Clarkson–Kruskal Direct Method 1503
 31.1.1. Simplified Scheme. Examples of Constructing Exact Solutions 1503
 31.1.2. Description of the Method: A Special Form for Symmetry Reduction 1505
 31.1.3. Description of the Method: the General Form for Symmetry Reduction 1506

31.2. Some Modifications and Generalizations 1507
 31.2.1. Symmetry Reductions Based on the Generalized Separation of
 Variables .. 1507
 31.2.2. Similarity Reductions in Equations with Three or More Independent
 Variables .. 1510

32. Classical Method of Symmetry Reductions 1513
 32.1. One-Parameter Transformations and Their Local Properties 1513
 32.1.1. One-Parameter Transformations. Infinitesimal Operator 1513
 32.1.2. Invariant of an Infinitesimal Operator. Transformations in the Plane 1514
 32.1.3. Formulas for Derivatives. Coordinates of the First and Second
 Prolongations .. 1515

32.2. Symmetries of Nonlinear Second-Order Equations. Invariance Condition 1516
 32.2.1. Invariance Condition. Splitting in Derivatives 1516
 32.2.2. Examples of Finding Symmetries of Nonlinear Equations 1516

32.3. Using Symmetries of Equations for Finding Exact Solutions. Invariant
 Solutions .. 1520
 32.3.1. Using Symmetries of Equations for Constructing One-Parameter
 Solutions .. 1520
 32.3.2. Procedure for Constructing Invariant Solutions 1520
 32.3.3. Examples of Constructing Invariant Solutions to Nonlinear Equations 1522
 32.3.4. Solutions Induced by Linear Combinations of Admissible Operators 1524

32.4. Some Generalizations. Higher-Order Equations 1526
 32.4.1. One-Parameter Lie Groups of Point Transformations. Group Generator 1526
 32.4.2. Group Invariants. Local Transformations of Derivatives 1526
 32.4.3. Invariant Condition. Splitting Procedure. Invariant Solutions 1527

32.5. Symmetries of Systems of Equations of Mathematical Physics 1527
 32.5.1. Basic Relations Used in Symmetry Analysis of Systems of Equations 1527
 32.5.2. Symmetries of Equations of Steady Hydrodynamic Boundary Layer 1528
33. Nonclassical Method of Symmetry Reductions ... 1533

33.1. General Description of the Method .. 1533
33.1.1. Description of the Method. Invariant Surface Condition 1533
33.1.2. Scheme for Constructing Exact Solutions by the Nonclassical Method 1533

33.2. Examples of Constructing Exact Solutions ... 1534
33.2.1. Newell-Whitehead Equation ... 1534
33.2.2. Nonlinear Wave Equation .. 1536

34. Method of Differential Constraints .. 1539

34.1. Preliminary Remarks. Method of Differential Constraints for Ordinary
Differential Equations .. 1539
34.1.1. Description of the Method. First-Order Differential Constraints 1539
34.1.2. Differential Constraints of Arbitrary Order. General Consistency
Method for Two Equations .. 1542
34.1.3. Some Generalizations. The Case of Several Differential Constraints 1543

34.2. Description of the Method for Partial Differential Equations 1545
34.2.1. Preliminary Remarks. A Simple Example ... 1545
34.2.2. General Description of the Method of Differential Constraints 1546

34.3. First-Order Differential Constraints for PDEs 1547
34.3.1. Second-Order Evolution Equations .. 1547
34.3.2. Second-Order Hyperbolic Equations .. 1551
34.3.3. Second-Order Equations of General Form 1553

34.4. Second-Order Differential Constraints for PDEs. Some Generalized 1553
34.4.1. Second-Order Differential Constraints ... 1553
34.4.2. Higher-Order Differential Constraints. Determining Equations 1555
34.4.3. Usage of Several Differential Constraints. Systems of Nonlinear
Equations ... 1557

34.5. Connection Between the Method of Differential Constraints and Other
Methods ... 1561
34.5.1. Generalized/Functional Separation of Variables vs. Differential
Constraints ... 1561
34.5.2. Direct Method of Symmetry Reductions and Differential Constraints 1562
34.5.3. Nonclassical Method of Symmetry Reductions and Differential
Constraints ... 1562

35. Painlevé Test for Nonlinear Equations of Mathematical Physics 1565

35.1. Movable Singularities of Solutions of Ordinary Differential Equations 1565
35.1.1. Examples of Solutions Having Movable Singularities 1565
35.1.2. Classification Results for Nonlinear First- and Second-Order Equations 1565
35.1.3. Painlevé Equations .. 1566
35.1.4. Painlevé Test for Ordinary Differential Equations 1566
35.1.5. Remarks on the Painlevé Test. Fuchs Indices. Examples 1567
35.1.6. The Painlevé Test for Systems of Ordinary Differential Equations 1569

35.2. Solutions of Partial Differential Equations with a Movable Pole. Method
Description ... 1569
35.2.1. Simple Scheme for Studying Nonlinear Partial Differential Equations 1570
35.2.2. General Scheme for Analysis of Nonlinear Partial Differential
Equations ... 1570
35.2.3. Basic Steps of the Painlevé Test for Nonlinear Equations 1570
35.2.4. Some Remarks. Truncated Expansions ... 1571
35.3. Performing the Painlevé Test and Truncated Expansions for Studying Some Nonlinear Equations ... 1572
35.3.1. Equations Passing the Painlevé Test ... 1572
35.3.2. Checking Whether Nonlinear Systems of Equations of Mathematical Physics Pass the Painlevé Test .. 1576
35.3.3. Construction of Solutions of Nonlinear Equations That Fail the Painlevé Test, Using Truncated Expansions ... 1577

36. Methods of the Inverse Scattering Problem (Soliton Theory) 1579
36.1. Method Based on Using Lax Pairs .. 1579
36.1.2. Examples of Lax Pairs for Nonlinear Equations of Mathematical Physics ... 1580
36.2. Method Based on a Compatibility Condition for Systems of Linear Equations ... 1581
36.2.1. General Scheme. Compatibility Condition. Systems of Two Equations ... 1581
36.2.2. Solution of the Determining Equations in the Form of Polynomials in \(\lambda \) ... 1582
36.3. Method Based on Linear Integral Equations 1584
36.3.1. Description of the Method ... 1584
36.3.2. Specific Examples .. 1585
36.4. Solution of the Cauchy Problem by the Inverse Scattering Problem Method ... 1587
36.4.1. Preliminary Remarks. Direct and Inverse Scattering Problems 1587
36.4.2. Solution of the Cauchy Problem for Nonlinear Equations by the Inverse Scattering Problem Method ... 1589
36.4.3. \(N \)-Soliton Solution of the Korteweg–de Vries Equation 1591

37. Conservation Laws ... 1593
37.1. Basic Definitions and Examples .. 1593
37.1.1. General Form of Conservation Laws. Integrals of Motion 1593
37.1.2. Conservation Laws for Some Nonlinear Equations of Mathematical Physics ... 1593
37.2. Equations Admitting Variational Form. Noetherian Symmetries 1595
37.2.1. Lagrangian. Euler–Lagrange Equation. Noetherian Symmetries ... 1595
37.2.2. Examples of Constructing Conservation Laws Using Noetherian Symmetries ... 1596

38. Nonlinear Systems of Partial Differential Equations 1599
38.1. Overdetermined Systems of Two Equations 1599
38.1.1. Overdetermined Systems of First-Order Equations in One Unknown ... 1599
38.1.2. Other Overdetermined Systems of Equations in One Unknown 1600
38.2. Pfaffian Equations and Their Solutions. Connection with Overdetermined Systems ... 1600
38.2.1. Pfaffian Equations ... 1600
38.2.2. Condition for Integrability of the Pfaffian Equation by a Single Relation ... 1601
38.2.3. Pfaffian Equations Not Satisfying the Integrability Condition 1602
38.3. Systems of First-Order Equations Describing Convective Mass Transfer with Volume Reaction ... 1602
38.3.1. Traveling-Wave Solutions and Some Other Invariant Solutions 1602
38.3.2. Systems Reducible to an Ordinary Differential Equation 1603
38.3.3. Some Nonlinear Problems of Suspension Transport in Porous Media ... 1604
38.3.4. Some Generalizations .. 1606
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.4.1</td>
<td>Systems of Two Quasilinear Equations. Systems in the Form of Conservation Laws</td>
<td>1607</td>
</tr>
<tr>
<td>38.4.2</td>
<td>Self-Similar Continuous Solutions. Hyperbolic Systems</td>
<td>1607</td>
</tr>
<tr>
<td>38.4.3</td>
<td>Simple Riemann Waves</td>
<td>1609</td>
</tr>
<tr>
<td>38.4.4</td>
<td>Linearization of Systems of Gas Dynamic Type by the Hodograph Transformation</td>
<td>1610</td>
</tr>
<tr>
<td>38.4.5</td>
<td>Cauchy and Riemann Problems. Qualitative Features of Solutions</td>
<td>1611</td>
</tr>
<tr>
<td>38.4.6</td>
<td>Reduction of Systems to the Canonical Form. Riemann Invariants</td>
<td>1611</td>
</tr>
<tr>
<td>38.4.7</td>
<td>Hyperbolic $n \times n$ Systems of Conservation Laws. Exact Solutions</td>
<td>1614</td>
</tr>
<tr>
<td>38.4.8</td>
<td>Shock Waves. Rankine–Hugoniot Jump Conditions</td>
<td>1615</td>
</tr>
<tr>
<td>38.4.9</td>
<td>Shock Waves. Evolutionary Conditions. Lax Condition</td>
<td>1616</td>
</tr>
<tr>
<td>38.4.10</td>
<td>Solutions for the Riemann Problem. Solutions Describing Shock Waves</td>
<td>1618</td>
</tr>
<tr>
<td>38.5.1</td>
<td>Traveling-Wave Solutions and Some Other Invariant Solutions</td>
<td>1620</td>
</tr>
<tr>
<td>38.5.2</td>
<td>Generalized Separable Solutions</td>
<td>1620</td>
</tr>
</tbody>
</table>

Part III. Symbolic and Numerical Solutions of Nonlinear PDEs with Maple, Mathematica, and MATLAB

39. Nonlinear Partial Differential Equations with Maple

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1.1</td>
<td>Introduction</td>
<td>1625</td>
</tr>
<tr>
<td>39.2.1</td>
<td>Brief Introduction to Maple</td>
<td>1625</td>
</tr>
<tr>
<td>39.3.1</td>
<td>Maple Language</td>
<td>1627</td>
</tr>
<tr>
<td>39.3.2</td>
<td>Analytical Solutions and Their Visualizations</td>
<td>1629</td>
</tr>
<tr>
<td>39.3.3</td>
<td>Constructing Analytical Solutions in Terms of Predefined Functions</td>
<td>1629</td>
</tr>
<tr>
<td>39.3.4</td>
<td>Constructing Solutions via Transformations</td>
<td>1635</td>
</tr>
<tr>
<td>39.3.5</td>
<td>Constructing Traveling-Wave Solutions</td>
<td>1637</td>
</tr>
<tr>
<td>39.3.6</td>
<td>Ansatz Methods (Tanh-Coth Method, Sine-Cosine Method, and Exp-Function Method) for Constructing Traveling-Wave Solutions</td>
<td>1641</td>
</tr>
<tr>
<td>39.3.7</td>
<td>Constructing Self-Similar Solutions</td>
<td>1645</td>
</tr>
<tr>
<td>39.3.8</td>
<td>Constructing Solutions along Characteristics</td>
<td>1647</td>
</tr>
<tr>
<td>39.3.9</td>
<td>Constructing Separable Solutions</td>
<td>1651</td>
</tr>
<tr>
<td>39.4.1</td>
<td>Analytical Solutions of Nonlinear Systems</td>
<td>1659</td>
</tr>
<tr>
<td>39.4.2</td>
<td>Constructing Traveling-Wave Solutions</td>
<td>1659</td>
</tr>
<tr>
<td>39.4.3</td>
<td>Constructing Generalized Separable Solutions</td>
<td>1661</td>
</tr>
<tr>
<td>39.5.1</td>
<td>Constructing Exact Solutions Using Symbolic Computation. What Can Go Wrong?</td>
<td>1662</td>
</tr>
<tr>
<td>39.5.2</td>
<td>Constructing New Exact Solutions</td>
<td>1662</td>
</tr>
<tr>
<td>39.5.3</td>
<td>Removing Redundant Exact Solutions</td>
<td>1665</td>
</tr>
<tr>
<td>39.6.1</td>
<td>Some Errors That People Commonly Do When Constructing Exact Solutions with the Use of Symbolic Computations</td>
<td>1668</td>
</tr>
<tr>
<td>39.6.2</td>
<td>General Description of the Problem</td>
<td>1668</td>
</tr>
<tr>
<td>39.6.3</td>
<td>Examples in Which “New Solutions” Are Obtained</td>
<td>1669</td>
</tr>
<tr>
<td>39.7.1</td>
<td>Numerical Solutions and Their Visualizations</td>
<td>1672</td>
</tr>
<tr>
<td>39.7.2</td>
<td>Constructing Numerical Solutions in Terms of Predefined Functions</td>
<td>1672</td>
</tr>
<tr>
<td>39.7.3</td>
<td>Constructing Finite Difference Approximations</td>
<td>1677</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.8.</td>
<td>Analytical-Numerical Solutions</td>
<td>1680</td>
</tr>
<tr>
<td>39.8.1</td>
<td>Analytical Derivation of Numerical Methods</td>
<td>1680</td>
</tr>
<tr>
<td>39.8.2</td>
<td>Constructing Numerical Solutions</td>
<td>1683</td>
</tr>
<tr>
<td>39.8.3</td>
<td>Comparison of Asymptotic and Numerical Solutions</td>
<td>1684</td>
</tr>
<tr>
<td>40.</td>
<td>Nonlinear Partial Differential Equations with Mathematica</td>
<td>1687</td>
</tr>
<tr>
<td>40.1</td>
<td>Introduction</td>
<td>1687</td>
</tr>
<tr>
<td>40.2</td>
<td>Brief Introduction to Mathematica</td>
<td>1687</td>
</tr>
<tr>
<td>40.2.1</td>
<td>Mathematica Language</td>
<td>1689</td>
</tr>
<tr>
<td>40.3</td>
<td>Analytical Solutions and Their Visualizations</td>
<td>1691</td>
</tr>
<tr>
<td>40.3.1</td>
<td>Constructing Solutions Using Predefined Functions</td>
<td>1692</td>
</tr>
<tr>
<td>40.3.2</td>
<td>Constructing Solutions via Transformations</td>
<td>1694</td>
</tr>
<tr>
<td>40.3.3</td>
<td>Constructing Traveling-Wave Solutions</td>
<td>1697</td>
</tr>
<tr>
<td>40.3.4</td>
<td>Ansatz Methods (Tanh-Coth Method, Sine-Cosine Method, and Exp-Function Method) for Constructing Traveling-Wave Solutions</td>
<td>1700</td>
</tr>
<tr>
<td>40.3.5</td>
<td>Constructing Self-Similar Solutions</td>
<td>1705</td>
</tr>
<tr>
<td>40.3.6</td>
<td>Constructing Solutions Along Characteristics</td>
<td>1706</td>
</tr>
<tr>
<td>40.3.7</td>
<td>Constructing Separable Solutions</td>
<td>1710</td>
</tr>
<tr>
<td>40.4</td>
<td>Analytical Solutions of Nonlinear Systems</td>
<td>1719</td>
</tr>
<tr>
<td>40.4.1</td>
<td>Constructing Traveling-Wave Solutions</td>
<td>1719</td>
</tr>
<tr>
<td>40.4.2</td>
<td>Constructing Generalized Separable Solutions</td>
<td>1721</td>
</tr>
<tr>
<td>40.5</td>
<td>Numerical Solutions and Their Visualizations</td>
<td>1722</td>
</tr>
<tr>
<td>40.5.1</td>
<td>Constructing Numerical Solutions in Terms of Predefined Functions</td>
<td>1722</td>
</tr>
<tr>
<td>40.5.2</td>
<td>Constructing Finite-Difference Approximations</td>
<td>1725</td>
</tr>
<tr>
<td>40.6</td>
<td>Analytical-Numerical Solutions</td>
<td>1728</td>
</tr>
<tr>
<td>40.6.1</td>
<td>Analytical Derivation of Numerical Methods</td>
<td>1729</td>
</tr>
<tr>
<td>40.6.2</td>
<td>Constructing Numerical Solutions</td>
<td>1731</td>
</tr>
<tr>
<td>40.6.3</td>
<td>Comparison of Asymptotic and Numerical Solutions</td>
<td>1733</td>
</tr>
<tr>
<td>41.</td>
<td>Nonlinear Partial Differential Equations with MATLAB</td>
<td>1735</td>
</tr>
<tr>
<td>41.1</td>
<td>Introduction</td>
<td>1735</td>
</tr>
<tr>
<td>41.2</td>
<td>Brief Introduction to MATLAB</td>
<td>1735</td>
</tr>
<tr>
<td>41.2.1</td>
<td>MATLAB Language</td>
<td>1738</td>
</tr>
<tr>
<td>41.3</td>
<td>Numerical Solutions Via Predefined Functions</td>
<td>1741</td>
</tr>
<tr>
<td>41.3.1</td>
<td>Scalar Nonlinear PDEs in One Space Dimension</td>
<td>1742</td>
</tr>
<tr>
<td>41.3.2</td>
<td>Systems of Nonlinear PDEs in One Space Dimension</td>
<td>1745</td>
</tr>
<tr>
<td>41.3.3</td>
<td>Nonlinear Elliptic PDEs in Two Space Dimensions</td>
<td>1748</td>
</tr>
<tr>
<td>41.3.4</td>
<td>Systems of Nonlinear Elliptic PDEs in Two Space Dimensions</td>
<td>1752</td>
</tr>
<tr>
<td>41.3.5</td>
<td>Nonlinear Elliptic PDEs. Geometrical Models</td>
<td>1754</td>
</tr>
<tr>
<td>41.4</td>
<td>Solving Cauchy Problems. Method of Characteristics</td>
<td>1756</td>
</tr>
<tr>
<td>41.5</td>
<td>Constructing Finite-Difference Approximations</td>
<td>1760</td>
</tr>
<tr>
<td>Supplements. Painlevé Transcendents. Functional Equations</td>
<td>1767</td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>Painlevé Transcendents</td>
<td>1769</td>
</tr>
<tr>
<td>42.1</td>
<td>Preliminary Remarks. Singular Points of Solutions</td>
<td>1769</td>
</tr>
<tr>
<td>42.2</td>
<td>First Painlevé Transcendent</td>
<td>1770</td>
</tr>
<tr>
<td>42.3</td>
<td>Second Painlevé Transcendent</td>
<td>1771</td>
</tr>
<tr>
<td>42.4</td>
<td>Third Painlevé Transcendent</td>
<td>1772</td>
</tr>
</tbody>
</table>
42.5. Fourth Painlevé Transcendent ... 1775
42.6. Fifth Painlevé Transcendent ... 1776
42.7. Sixth Painlevé Transcendent ... 1777
42.8. Examples of Solutions to Nonlinear Equations in Terms of Painlevé
 Transcendents .. 1778

43. Functional Equations ... 1783
 43.1. Method of Differentiation in a Parameter 1783
 43.1.1. Classes of Equations. Description of the Method 1783
 43.1.2. Examples of Solutions of Some Specific Functional Equations .. 1784
 43.2. Method of Differentiation in Independent Variables 1785
 43.2.1. Preliminary Remarks .. 1785
 43.2.2. Examples of Solutions of Some Specific Functional Equations .. 1785
 43.3. Method of Argument Elimination by Test Functions 1786
 43.3.1. Classes of Equations. Description of the Method 1786
 43.3.2. Examples of Solutions of Specific Functional Equations 1787
 43.4. Nonlinear Functional Equations Reducible to Bilinear Equations ... 1789
 43.4.1. Bilinear Functional Equations 1789
 43.4.2. Functional-Differential Equations Reducible to a Bilinear Equation .. 1790
 43.4.3. Nonlinear Functional Equations Containing the Complex Argument .. 1790

Bibliography... 1795

Index... 1841