Contents

List of contributors
Preface

1 Introduction
Matthias Rudolph

1.1 Model extraction challenges
1.2 Model extraction workflow
References

2 DC and thermal modeling: III–V FETs and HBTs
Masaya Iwamoto, Jianjun Xu, and David E. Root

2.1 Introduction
2.2 Basic DC characteristics
2.3 FET DC parameters and modeling
2.4 HBT DC parameters and modeling
2.5 Process control monitoring
2.6 Thermal modeling overview
2.7 Physics-based thermal scaling model for HBTs
2.8 Measurement-based thermal model for FETs
2.9 Transistor reliability evaluation
Acknowledgments
References

3 Extrinsic parameter and parasitic elements in III–V HBT and HEMT modeling
Sonja R. Nedeljko, William J. Clausen, Faramarz Kharabi, John R. F. McMacken, and Joseph M. Gering

3.1 Introduction
3.2 Test structures with calibration and de-embedding
3.3 Methods for extrinsic parameter extraction used in HBTs
3.4 Methods for extrinsic parameter extraction used in HEMTs
3.5 Scaling for multicell arrays
References

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Model extraction challenges</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Model extraction workflow</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>DC and thermal modeling: III–V FETs and HBTs</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic DC characteristics</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>FET DC parameters and modeling</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>HBT DC parameters and modeling</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Process control monitoring</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Thermal modeling overview</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Physics-based thermal scaling model for HBTs</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Measurement-based thermal model for FETs</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Transistor reliability evaluation</td>
<td>36</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Extrinsic parameter and parasitic elements in III–V HBT and HEMT modeling</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Test structures with calibration and de-embedding</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Methods for extrinsic parameter extraction used in HBTs</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Methods for extrinsic parameter extraction used in HEMTs</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Scaling for multicell arrays</td>
<td>72</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>83</td>
</tr>
</tbody>
</table>
Contents

Uncertainties in small-signal equivalent circuit modeling
Christian Fager, Kristoffer Andersson, and Matthias Ferndahl

4.1 Introduction 86
4.2 Uncertainties in direct extraction methods 88
4.3 Optimizer-based estimation techniques 97
4.4 Complexity versus uncertainty in equivalent circuit modeling 116
4.5 Summary and discussion 120
References 120

The large-signal model: theoretical foundations, practical considerations, and recent trends
David E. Root, Jianjun Xu, Jason Horn, and Masaya Iwamoto

5.1 Introduction 123
5.2 The equivalent circuit 123
5.3 Nonlinear model constitutive relations 127
5.4 Table-based models 130
5.5 Models based on artificial neural networks (ANNs) 135
5.6 Extrapolation of measurement-based models 137
5.7 Charge modeling 139
5.8 Terminal charge conservation, delay, and transit time for HBT models 153
5.9 FET modeling in terms of a drift charge concept 156
5.10 Parameter extraction of compact models from large-signal data 158
5.11 Conclusions 166
References 166

Large and packaged transistors
Jens Engelmann, Franz-Josef Schmuckle, and Matthias Rudolph

6.1 Introduction 171
6.2 Thermal modeling 175
6.3 EM simulation 178
6.4 Equivalent-circuit package model 187
References 204

Nonlinear characterization and modeling of dispersive effects in high-frequency power transistors
Olivier Jardel, Raphael Sommet, Jean-Pierre Teyssier, and Raymond Quéré

7.1 Introduction 206
7.2 Nonlinear electrothermal modeling 207
7.3 Trapping effects 215
7.4 Characterization tools 243
7.5 Conclusions 249
Acknowledgment 250
References 250
8 Optimizing microwave measurements for model construction and validation
Dominique Schreurs, Maciej Myslinski, and Giovanni Crupi

8.1 Introduction 257
8.2 Microwave measurements and de-embedding 258
8.3 Measurements for linear model construction 264
8.4 Measurements for model validation 266
8.5 Measurements for nonlinear model construction 274
References 284

9 Practical statistical simulation for efficient circuit design
Peter Zampardi, Yingying Yang, Juntao Hu, Bin Li, Mats Fredriksson, Kai Kwok, and Hongxiao Shao

9.1 Introduction 287
9.2 Approach, model development, design flow 289
9.3 Examples of application to real circuits 312
9.4 Summary 314
Acknowledgments 315
References 316

10 Noise modeling
Manfred Berroth

10.1 Fundamentals 318
10.2 Noise sources 325
10.3 Noise analysis in linear network theory 331
10.4 Noise measurement setups 336
10.5 Transistor noise parameter extraction 339
10.6 Summary 348
References 348

Index 350