Petroleum Engineer's Guide to Oil Field Chemicals and Fluids

Johannes Karl Fink

1. Drilling Muds

Classification of Muds
- Dispersed Noninhibited Systems 2
- Phosphate-treated Muds 4
- Lignite Muds 4
- Quebracho Muds 5
- Lignosulfonate Muds 5
- Lime Muds 5
- Sea Water Muds 5
- Nondispersed Noninhibited Systems 5
- Low-solids Fresh Water Muds 6
- Variable Density Fluids 6
- Gas-based Muds 7
- Drill-in Fluids 7

Mud Compositions
- Inhibitive Water-based Muds 7
- Water-based Muds 8
- Oil-based Drilling Muds 12
- Synthetic Muds 13
- Inverted Emulsion Drilling Muds 15
- Foam Drilling 18
- Chemically Enhanced Drilling 18
- Supercritical Carbon Dioxide Drilling 19

Additives
- Thickeners 19
- Lubricants 21
- Bacteria 22
- Corrosion Inhibitors 23
- Viscosity Control 24
- Clay Stabilization 24
- Formation Damage 24
- Shale Stabilizer 24
- Fluid Loss Additives 26
- Scavengers 28
- Surfactants 29
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrate Inhibitors</td>
<td>30</td>
</tr>
<tr>
<td>Weighting Materials</td>
<td>30</td>
</tr>
<tr>
<td>Organoclay Compositions</td>
<td>32</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>34</td>
</tr>
<tr>
<td>Multicomponent Additives</td>
<td>36</td>
</tr>
<tr>
<td>Cleaning Operations</td>
<td>36</td>
</tr>
<tr>
<td>Cuttings Removal</td>
<td>36</td>
</tr>
<tr>
<td>Junk Removal</td>
<td>37</td>
</tr>
<tr>
<td>Filter Cake Removal</td>
<td>37</td>
</tr>
<tr>
<td>Drilling Fluid Disposal</td>
<td>38</td>
</tr>
<tr>
<td>Toxicity</td>
<td>38</td>
</tr>
<tr>
<td>Conversion Into Cements</td>
<td>39</td>
</tr>
<tr>
<td>Environmental Regulations</td>
<td>40</td>
</tr>
<tr>
<td>Characterization of Drilling Muds</td>
<td>40</td>
</tr>
<tr>
<td>Viscosity</td>
<td>40</td>
</tr>
<tr>
<td>API Filtration</td>
<td>40</td>
</tr>
<tr>
<td>Alkalinity and pH</td>
<td>41</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>41</td>
</tr>
<tr>
<td>Roller Oven</td>
<td>41</td>
</tr>
<tr>
<td>References</td>
<td>42</td>
</tr>
<tr>
<td>Tradenames</td>
<td>55</td>
</tr>
</tbody>
</table>

2. Fluid Loss Additives

- **Mechanism of Action of Fluid Loss Agents** 61
- Action of Macroscopic Particles 61
- Action of Cement Fluid Loss Additives 62
- Testing of Fluid Loss Additives 63
- Formation Damage 63
- Reversible Gels 64
- Bacteria 64
- **Inorganic Additives** 64
- Bentonite 64
- Sodium Metasilicate 65
- Ultra-fine Filtrate-Reducing Agents 65
- Bridging Agents for Fluid Loss Control 65
- **Organic Additives** 67
- Tall Oil Pitch 67
- Mercaptans for Iron Control 69
- **Polysaccharides** 70
- Cellulose-based Fluid Loss Additives 70
- Starch 71
- Borate Crosslinkers 75
- Guar 76
- Succinoglycan 77
- Polyether-modified Polysaccharides 77
- Scleroglucan 78
- Gellan 78
3. Clay Stabilization

Properties of Clays 125
Swelling of Clays 127
Montmorillonite 130
Guidelines 130
Mechanisms Causing Instability 131
Kinetics of the Swelling of Clays 131
Hydrational Stress 131
Borehole Stability Model 132
Shale Inhibition with Water-based Muds 132
Inhibiting Reactive Argillaceous Formations 132
Thermal Treatment to Increase the Permeability 132
Formation Damage by Fluids 133
Formation Damage in Gas Production Shut-in 133
Swelling Inhibitors 133
Salts 133
Quaternary Ammonium Salts 134
Potassium Formate 135
Saccharide Derivatives 136
Sulfonated Asphalt 136
Grafted Copolymers 137
Polyoxyalkylene Amines 137
Anionic Polymers 139
Amine Salts of Maleic Imide 139
Comparative Study 139
Test Methods 142
Shale Erosion Test 142
Hassler Cell 142
References 143
Tradenames 147
4. **Lubricants**

- Synthetic Greases 149
- Base Fluids 150
- Extreme Pressure Agents 151
- Anti-seize Agents 152
- Anti-wear Additives 153
- Metal Deactivators 154
- Solubility Aids 154
- Antioxidants 154
- Base stocks 154
- **Lubricant Compositions** 154
- Molybdenum disulfide 154
- Polarized Graphite 155
- Ellipsoidal Glass Granules 156
- Calcium-Sulfonate-based Greases 156
- Paraffins 157
- Olefins 157
- Phospholipids 157
- Alcohols 158
- Ethers 161
- Esters 162
- Polymers 165
- Starch 166
- Amides 171
- **Special Issues** 172
- Side Reactions 172
- Silicate-Based Muds 172
- Studies on Pipe Sticking 174
- Differential Sticking Reducer 174
- **References** 174
- **Tradenames** 183

5. **Bacterial Control**

- **Mechanisms of Growth** 185
- Growth of Bacteria Supported by Oil Field Chemicals 185
- Mathematical Models 186
- Detection of Bacteria 187
- Sulfate-reducing Bacteria 190
- Bacterial Corrosion 191
- **Mechanisms of Microbial Corrosion** 191
- Corrosion Monitoring 193
- Assessment of the Activity of Biocides 194
- Synergistic Action of Biocides 195
- **Treatments with Biocides** 196
- Previously Fractured Formations 196
- Intermittent Addition of Biocide 196
- Nonbiocidal Control 196
6. Corrosion Inhibitors

Classification of Corrosion Inhibitors 218
Fields of Application 218
Acidization 219
Oil Storage Tanks 219
Pipelines 220
Production Wells 220
Scale Removal Treatments Using Acids 220
Application Techniques 220
Batch Versus Continuous Application 220
Emulsions 221
Application in Solid Form 221
Characterization 221
Dye Transfer Method 221
Liquid Chromatography 222
Thin Layer Chromatography 222
Ultraviolet Spectroscopy 222
Corrosion Tests 222
Side Effects 223
Stabilizer for Emulsions 223
Antisynergism with Alcohols 223
Synergism with Surfactants 223
Interactions with Kinetic Gas Hydrate Inhibitors 224
Effect of Flow on Inhibitor Film Life 224
Inhibitor Chemicals 225
Amides and Imidazolines 225
Salts of Nitrogenous Bases 228
Nitrogen Quaternaries 228
Polyoxylated Amines, Amides, and Imidazolines 229
Mercaptan Modified Products 229
Nitrogen Heterocyclics 233
Carbonyl Compounds 236
Silicate-based Inhibitors 237
Thioacetals 237
Miscellaneous Inhibitors 239
Antimony Halides 239
Aldol-amine Adducts 239
Encapsulated Types 241
Anti-biofoulant Corrosion inhibitors 241
Formic Acid Free Formulation 242
Intensifiers 242
References 244
Tradenames 252
7. Scale Inhibitors

- **Classification and Mechanism** 253
- **Thermodynamic Inhibitors** 255
- **Kinetic Inhibitors** 256
- **Adherence Inhibitors** 256
- **Mathematical Models** 256
- **Optimal Dose** 256
- **Precipitation Squeeze Method** 256
- **Inhibitor Chemicals** 257
- **Water-soluble Inhibitors** 258
- **Oil-soluble Scale Inhibitors** 263
- **Inhibitors for Special Tasks** 264
- **Characterization** 267
- **Spectroscopic Methods** 267
- **Turbidimetry** 267
- **Static Bottle Test** 267
- **References** 268
- **Tradenames** 274

8. Gelling Agents

- **Placing Gels** 275
- **Basic Mechanisms of Gelling Agents** 276
- **Polymer–Crosslinker–Retarder Systems** 276
- **Gelling in Oil-based Systems** 277
- **Aluminum Phosphate Ester Salts** 278
- **Less Volatile Phosphoric Acid Esters** 278
- **Aluminum Trichloride** 279
- **Biopolymers** 280
- **Organic Polysilicate Ester** 281
- **Latex** 281
- **Gelling in Water-based Systems** 282
- **Xanthan Gum** 282
- **Carboxymethyl Cellulose** 282
- **Polyacrylamide-based Formulations** 283
- **Polyacrylic Acid** 287
- **Alkali-Silicate Aminoplast Compositions** 288
- **In Situ Formed Polymers** 288
- **Epoxide Resins** 288
- **Urea-formaldehyde Resins** 288
- **Vinyl Monomers** 289
- **References** 290
- **Tradenames** 293

9. Filter Cake Removal

- **Bridging Agents** 296
- **Degradable Bridging Agents** 296
- **Dissolvable Bridging Agents** 298
10. Cement Additives

Cementing Technologies
Primary Cementing
Secondary Cementing
Squeeze Cementing
Plug Cementing
Basic Composition of Portland Cement
Manufacturing
Active Components in Cements
Chemistry of Setting
Standardization of Cements
Mixing with Additives
Important Properties of Cement Slurries and Set Cement
Special Cement Types
Resin Cement
Oil-based Cement
High-temperature Cement
Low-temperature Cement
High-alumina Cement
Magnesian Cement
Fiber Cement
Acid Gas Resistant Cement
Permeable Cement
Salt-water Stable Latex Cement
Settable Drilling Fluids
Classification of Cement Additives
Light-weight Cement
Foam Cement 328
Density-increasing or Weighting Agents 329
Control of Thickening and Setting Time 330
Viscosity Control 334
Dispersants 335
Expansion Additives 335
Set Strength Enhancement 337
Adhesion Improvement 338
Fluid Loss Control 338
Clay Control Additives 341
Anti-gas-migration Agents 342
Corrosion Inhibitors 342
Other Chemical Attack 343
Use of Waste from Other Industrial Branches 343
References 345
Tradenames 358

11. Transport

Pretreatment of the Products 361
Pretreatment for Corrosion Prevention 361
Natural Gas 362
Sulfur Contamination of Refined Products 364
Demulsifiers 364
Heavy Crudes 365
Corrosion Control 365
Crude Oil Treatment 366
Chemical Inhibition 366
Coatings 367
Paraffin Inhibitors 368
Pour Point Depressants 369
Drag Reducers 369
Drag Reduction in Gas Transmission Lines 371
Synergism with Paraffin Deposition 371
Hydrate Control 371
Additives for Slurry Transport 371
Additives for Odorization 373
Cleaning 373
Gelled Pigs 374
References 374

12. Drag Reducers

Operating Costs 379
Mechanism of Drag Reduction 380
Damping of Transmission of Eddies 380
Viscoelastic Fluid Thread 381
Polymer Degradation in Turbulent Flow 381
13. Gas Hydrate Control

Naturally Occurring Gas Hydrates 392
Problems with Gas Hydrates in Petroleum Technology 393
Nature of Inclusion Compounds 394
Gas Hydrates 395
Conditions for Formation 397
Water Content 397
Decomposition 397
Stability Diagram 397
Clausius-Clapeyron Equation 397
Hammerschmidt Equation 399
Formation and Properties of Gas Hydrates 399
Two-Step Mechanism of Formation 399
Nucleation Particle Sizes 400
Clustering Before Nucleation 400
Experimental Methods 400
Modeling the Formation of Gas Hydrates 401
Test Procedures for Inhibitors 401
Screening Method 402
High Pressure Sapphire Cell 402
Circulating Loop 402
Inhibition of Gas Hydrate Formation 403
Drying 403
Thermodynamic Inhibition with Additives 403
Kinetic Inhibition 403
Nucleation Inhibitors 404
Crystal Growth Inhibitors 404
Agglomeration Inhibitors 416
Gas Hydrate Inhibitors with Corrosion Inhibition 416
Recyclable Antifreeze Agents 417
14. Antifreeze Agents

- **Theory of Action** 427
- **Antifreeze Chemicals** 428
- **Heat Transfer Liquids** 429
- **Brines** 430
- **Alcohols** 430
- **Glycols** 430
- **Toxicity and Environmental Aspects** 433
- **Special Uses** 434
- **Hydraulic Cement Additives** 434
- **Pipeline Transportation of Aqueous Emulsions of Oil** 434
- **Low Temperature Drilling Fluids** 435
- **References** 435

15. Odorization

- **General Aspects** 438
- **Limits of Explosion** 438
- **Desirable Properties of Odorants** 438
- **Measurement and Odor Monitoring** 439
- **Olfactoric Response** 439
- **Physiological Methods** 441
- **Chemical and Physical Methods** 444
- **Additives for Odorization** 446
- **Sulfur Compounds** 446
- **Other Compounds** 448
- **Industrial Synthesis of Odorants** 450
- **Uses and Properties** 451
- **Odorant Injection Techniques** 451
- **Leak Detection** 452
- **Fuel Cells** 452
- **Odor-fading** 453
- **Environmental Problems** 453
- **References** 454
- **Tradenames** 458

16. Enhanced Oil Recovery

- **Waterflooding** 460
- **Surfactants** 460
- **Interphase Structure** 467
- **Interfacial Rheological Properties** 468
- **Microemulsion Phase Diagrams** 469
- **Interfacial Tension** 469
- **Imbibition Experiments** 469
Caustic Waterflooding 470
Injection Strategies 470
Foam-enhanced Caustic Waterflooding 470
Alkaline Surfactant Polymer Flooding 470
Interphase Properties 471
Clay Dissolution 471
Acid Flooding 471
Hydrochloric Acid 471
Sulfuric Acid 472
Emulsion Flooding 472
Micellar Polymer Flooding 473
Chemical Injection 474
Ammonium Carbonate 474
Hydrogen Peroxide 474
Alcohol-Waterflooding 475
Chemical Injection of Waste Gases 475
Polymer Waterflooding 476
Low-tension Polymer Flood Technique 476
Influence of Viscosity on Ionic Strength 477
Modified Acrylics 477
Biopolymers 477
Combination Flooding 477
Low-tension Polymer Flood 477
Effect of Alkaline Agents on the Retention 478
Alkaline Steamflooding 478
Sediment-forming Materials 478
Water-alternating Gas Technology 479
Hydrocarbon-assisted Steam Injection 479
Foam Flooding 479
Basic Principles of Foam Flooding 479
Ambient Pressure Foam Tests 480
Polymer-enhanced Foams 483
Carbon Dioxide Flooding 483
Steamflooding 484
Carbon Dioxide 484
Air Injection 484
Chemical Reactions 485
In Situ Combustion 485
Special Techniques 485
Viscous Oil Recovery 485
Low-permeability Flooding 486
Microbial-Enhanced Oil Recovery Techniques 487
Basic Principles and Methods 487
Economics 488
Strict Anaerobic Bacteria 492
Ultramicrobacteria 493
Scale Inhibitors as a Microbial Nutrient 494
Interfacial Properties 494
Tracers 495
17. Fracturing Fluids

Stresses and Fractures 519
Comparison of Stimulation Techniques 520
Action of a Fracturing Fluid 520
Stages in a Fracturing Job 521
Types of Hydraulic Fracturing Fluids 521
Comparison of Different Techniques 524
Expert Systems for Assessment 526
Water-Based Systems 526
Thickeners and Gelling Agents 526
Concentrates 534
FrictionReducers 535
Fluid Loss Additives 535
pH Control Additives 537
Clay Stabilizers 538
Biocides 539
Surfactants 539
Crosslinkers 541
Gel Breaking in Water-based Systems 546
Scale Inhibitors 552
Oil-Based Systems 553
Organic Gel Aluminum Phosphate Ester 553
Increasing the Viscosity of Diesel 554
Gel Breakers 554
Foam-Based Fracturing Fluids 555
Defoamers 556
Fracturing in Coal-Beds 558
Propping Agents 559
Sand 559
Ceramic Particles 559
Bauxite 560
Light-weight Proppants 560
Porous Pack with Fibers 560
18. Water Shutoff

Classification of Methods 585
In Situ Polymerization 586
Acrylic Gels 587
Crosslinkers 587
Special Applications 590
Shear-Initiated Inversion of Emulsions 591
Thermally Stable Gels 591
Disproportionate Permeability Reduction 591
Field Experience 592
Silicate-based Agents 592
Combined Polymer-Silicate Technology 593
Gel-Foam Technique 593
Resin Types 595
Epoxide Resins 595
Urea-Formaldehyde Resins 595
Furan-Silicone Resins 597
Cement with Additives 597
Polymethyl Methacrylate Modified with Monoethanolamine 597
Crude Light Pyridine Bases 597
Granulated Fly Ash 598
Phosphonic Acid Derivates 598
19. Oil Spill Treating Agents

History 625
List of Major Oil Spills 625
General Requirements 627
Mechanisms 627
Application 628
Environmental Aspects 630
Implementation Application Programs 632
Tests 633
Subsurface, Soil, and Ground Water 638
In Situ Chemical Oxidation 639
Ground Water 639
20. Waste Disposal

Drilling Fluids 647
Bioremediation 647
Assessment of Biodegradability 648
Supercritical Fluid Extraction 649
Cuttings 649
Environmental Impact 649
Modeling the Discharge 650
Microwave Treatment 651
Discharge in Cement 654
Fillers in Bitumen 655
Chromium Removal 655
Injection Techniques 655
Acid Gas Injection 656
Storage of Carbon Dioxide 656
Slurry Fracture Injection Technique 656
Use as Sealants 658
References 660
Tradenames 662

21. Dispersions, Emulsions, and Foams

Dispersions 664
Dispersants 664
Emulsions 670
Oil-in-water Emulsions – Invert Emulsions 671
Water-in-water Emulsions 673
Oil-in-water-in-oil Emulsions 673
Microemulsions 674
Solids-stabilized emulsion 674
Biotreated Emulsion 676
Shale Inhibition 677
Transportation 678
Acid-rich Oils 678
Characterization of Emulsions 678
Low Fluorescence Emulsifiers 682
Foams 683
Aphrons 684
References 688
Tradenames 693

22. Defoamers

Theory of Defoaming 695
Stability of Foams 695
Action of Defoamers 696
23. Demulsifiers

Emulsions in Produced Crude Oil 705
Waterflooding 706
Oil Spill Treatment 706
Desired Properties 706
Mechanisms of Demulsification 706
Stabilization of Water-oil Emulsions 706
Interfacial Tension Relaxation 706
Performance Testing 707
Spreading Pressure 707
Characterization by Dielectric Constant 707
Shaker Test Methods 707
Viscosity Measurements 707
Screening 708
Classification of Demulsifiers 708
Common Precursor Chemicals 708
Demulsifiers in Detail 710
Polyoxyalkylenes 710
Vinyl Polymers 713
Polyamines 716
Polyamides 718
Phenolics 718
Alkoxylated Fatty Oils 719
Biodemulsifiers 719
References 720

Appendix 1: List of Tradenames 727
Appendix 2: List of Acronyms 735

Index

Chemical Index 739
Subject Index 767