INTRODUCTION TO DIFFERENTIAL CALCULUS ## Systematic Studies with Engineering Applications for Beginners Ulrich L. Rohde G. C. Jain Ajay K. Poddar A. K. Ghosh ## **CONTENTS** | Forew | ord | | xiii | |----------------------------------|--|---|------| | Prefac | e | | xvii | | Biogra | phies | | xxv | | Introduction
Acknowledgements | | xxvii | | | | | xxix | | | 1 | From Arithmetic to Algebra (What must you know to learn Calculus?) | | 1 | | | 1.1 | Introduction | 1 | | | 1.2 | The Set of Whole Numbers | 1 | | | 1.3 | The Set of Integers | 1 | | | 1.4 | The Set of Rational Numbers | 1 | | | 1.5 | The Set of Irrational Numbers | 2 | | | 1.6 | The Set of Real Numbers | 2 | | | 1.7 | Even and Odd Numbers | 3 | | | 1.8 | Factors | 3 | | | 1.9 | Prime and Composite Numbers | 3 | | | 1.10 | Coprime Numbers | 4 | | | 1.11 | Highest Common Factor (H.C.F.) | 4 | | | 1.12 | Least Common Multiple (L.C.M.) | 4 | | | 1.13 | The Language of Algebra | 5 | | | 1.14 | Algebra as a Language for Thinking | 7 | | | 1.15 | Induction | 9 | | | 1.16 | An Important Result: The Number of Primes is Infinite | 10 | | | 1.17 | Algebra as the Shorthand of Mathematics | 10 | | | 1.18 | Notations in Algebra | 11 | | | 1.19 | Expressions and Identities in Algebra | 12 | | | 1.20 | Operations Involving Negative Numbers | 15 | | | 1.21 | Division by Zero | 16 | | 2 | | Concept of a Function | | | | (Who | at must you know to learn Calculus?) | 19 | | | 2.1 | Introduction | 19 | | | 2.2 | Equality of Ordered Pairs | 20 | | | 2.3 | Relations and Functions | 20 | | | 2.4 | Definition | 21 | | | 2.5 | Domain, Codomain, Image, and Range of a Function | 23 | |---|-------|--|----| | | 2.6 | Distinction Between " f " and " $f(x)$ " | 23 | | | 2.7 | Dependent and Independent Variables | 24 | | | 2.8 | Functions at a Glance | 24 | | | 2.9 | Modes of Expressing a Function | 24 | | | 2.10 | Types of Functions | 25 | | | 2.11 | Inverse Function f^{-1} | 29 | | | 2.12 | Comparing Sets without Counting their Elements | 32 | | | 2.13 | The Cardinal Number of a Set | 32 | | | 2.14 | Equivalent Sets (Definition) | 33 | | | 2.15 | Finite Set (Definition) | 33 | | | 2.16 | Infinite Set (Definition) | 34 | | | 2.17 | Countable and Uncountable Sets | 36 | | | 2.18 | Cardinality of Countable and Uncountable Sets | 36 | | | 2.19 | Second Definition of an Infinity Set | 37 | | | 2.20 | The Notion of Infinity | 37 | | | 2.21 | An Important Note About the Size of Infinity | 38 | | | 2.22 | Algebra of Infinity (∞) | 38 | | 3 | Disco | overy of Real Numbers: Through Traditional Algebra | | | | | t must you know to learn Calculus?) | 41 | | | 3.1 | Introduction | 41 | | | | Prime and Composite Numbers | 42 | | | 3.3 | The Set of Rational Numbers | 43 | | | 3.4 | The Set of Irrational Numbers | 43 | | | 3.5 | The Set of Real Numbers | 43 | | | 3.6 | Definition of a Real Number | 44 | | | 3.7 | Geometrical Picture of Real Numbers | 44 | | | 3.8 | Algebraic Properties of Real Numbers | 44 | | | 3.9 | Inequalities (Order Properties in Real Numbers) | 45 | | | 3.10 | Intervals | 46 | | | 3.11 | Properties of Absolute Values | 51 | | | 3.12 | Neighborhood of a Point | 54 | | | 3.13 | Property of Denseness | 55 | | | 3.14 | Completeness Property of Real Numbers | 55 | | | 3.15 | (Modified) Definition II (l.u.b.) | 60 | | | 3.16 | (Modified) Definition II (g.l.b.) | 60 | | 4 | Fron | n Geometry to Coordinate Geometry | | | | (Who | nt must you know to learn Calculus?) | 63 | | | 4.1 | Introduction | 63 | | | 4.2 | Coordinate Geometry (or Analytic Geometry) | 64 | | | 4.3 | The Distance Formula | 69 | | | 4.4 | Section Formula | 70 | | | 4.5 | The Angle of Inclination of a Line | 71 | | | 4.6 | Solution(s) of an Equation and its Graph | 76 | | | 4.7 | Equations of a Line | 83 | | | 4.8 | Parallel Lines | 89 | | | 4.9 | Relation Between the Slopes of (Nonvertical) Lines that are | | |------------|-------|--|-----| | | | Perpendicular to One Another | 90 | | | 4.10 | Angle Between Two Lines | 92 | | | 4.11 | Polar Coordinate System | 93 | | 5 | | nometry and Trigonometric Functions | | | | (What | t must you know to learn Calculus?) | 97 | | | 5.1 | Introduction | 97 | | | 5.2 | (Directed) Angles | 98 | | | 5.3 | Ranges of $\sin \theta$ and $\cos \theta$ | 109 | | | 5.4 | Useful Concepts and Definitions | 111 | | | 5.5 | Two Important Properties of Trigonometric Functions | 114 | | | 5.6 | Graphs of Trigonometric Functions | 115 | | | 5.7 | Trigonometric Identities and Trigonometric Equations | 115 | | | 5.8 | Revision of Certain Ideas in Trigonometry | 120 | | 6 | | About Functions | | | | (Wha | t must you know to learn Calculus?) | 129 | | | 6.1 | Introduction | 129 | | | 6.2 | Function as a Machine | 129 | | | 6.3 | Domain and Range | 130 | | | 6.4 | Dependent and Independent Variables | 130 | | | 6.5 | Two Special Functions | 132 | | | 6.6 | Combining Functions | 132 | | | 6.7 | Raising a Function to a Power | 137 | | | 6.8 | Composition of Functions | 137 | | | 6.9 | Equality of Functions | 142 | | | 6.10 | Important Observations | 142 | | • | 6.11 | Even and Odd Functions | 143 | | | 6.12 | Increasing and Decreasing Functions | 144 | | | 6.13 | Elementary and Nonelementary Functions | 147 | | 7a | The | Concept of Limit of a Function | | | | (Wh | at must you know to learn Calculus?) | 149 | | | 7a.1 | Introduction | 149 | | | 7a.2 | Useful Notations | 149 | | | 7a.3 | The Concept of Limit of a Function: Informal Discussion | 151 | | | 7a.4 | Intuitive Meaning of Limit of a Function | 153 | | | 7a.5 | Testing the Definition [Applications of the ε , | | | | | δ Definition of Limit] | 163 | | | 7a.6 | | 174 | | | 7a.7 | | 175 | | | 7a.8 | One-Sided Limits (Extension to the Concept of Limit) | 175 | | 7 k | Met | chods for Computing Limits of Algebraic Functions | | | | (Wh | at must you know to learn Calculus?) | 177 | | | 7b.1 | Introduction | 177 | | | 7b.2 | Methods for Evaluating Limits of Various Algebraic Functions | 178 | | | 7b.3
7b.4
7b.5 | Infinite Limits | 187
190
192 | |----|--|--|---| | 8 | | Concept of Continuity of a Function, and Points of Discontinuity to must you know to learn Calculus?) | 197 | | | 8.1
8.2
8.3
8.4 | Introduction Developing the Definition of Continuity "At a Point" Classification of the Points of Discontinuity: Types of Discontinuities Checking Continuity of Functions Involving Trigonometric, Exponential, and Logarithmic Functions From One-Sided Limit to One-Sided Continuity and its Applications Continuity on an Interval Properties of Continuous Functions | 197
204
214
215
224
224
225 | | 9 | The I | dea of a Derivative of a Function | 235 | | | 9.1
9.2
9.3 | Introduction Definition of the Derivative as a Rate Function Instantaneous Rate of Change of $y = f(x)$ at $x = x_1$ and the | 235
239 | | | 9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11 | Slope of its Graph at $x = x_1$
A Notation for Increment(s)
The Problem of Instantaneous Velocity
Derivative of Simple Algebraic Functions
Derivatives of Trigonometric Functions
Derivatives of Exponential and Logarithmic Functions
Differentiability and Continuity
Physical Meaning of Derivative
Some Interesting Observations
Historical Notes | 239
246
246
259
263
264
270
271
273 | | 10 | | ebra of Derivatives: Rules for Computing Derivatives of ious Combinations of Differentiable Functions | 275 | | | 10.1
10.2
10.3
10.4
10.5 | Introduction Recalling the Operator of Differentiation The Derivative of a Composite Function Usefulness of Trigonometric Identities in Computing Derivatives | 275
277
290
300
302 | | 11 | | sic Trigonometric Limits and Their Applications
Computing Derivatives of Trigonometric Functions | 307 | | | 11a.
11a.
11a. | 2 Basic Trigonometric Limits | 307
308
314 | | 11 | b Mo | ethods of Computing Limits of Trigonometric Functions | 325 | | | 11b.
11b. | | 325
328 | | | 11b.3 | Limits of the Type (II) $[\lim_{x \to a} f(x), \text{ where } a \neq 0]$ | 332 | |-----|--------|--|-----| | | 11b.4 | Limits of Exponential and Logarithmic Functions | 335 | | 12 | Expo | nential Form(s) of a Positive Real Number and its | | | | Loga | rithm(s): Pre-Requisite for Understanding Exponential | | | | | ogarithmic Functions | | | | (Wha | t must you know to learn Calculus?) | 339 | | | 12.1 | Introduction | 339 | | | 12.2 | Concept of Logarithmic | 339 | | | 12.3 | The Laws of Exponent | 340 | | | 12.4 | Laws of Exponents (or Laws of Indices) | 341 | | | 12.5 | Two Important Bases: "10" and "e" | 343 | | | 12.6 | Definition: Logarithm | 344 | | | 12.7 | Advantages of Common Logarithms | 346 | | | 12.8 | Change of Base | 348 | | • | 12.9 | Why were Logarithms Invented? | 351 | | | 12.10 | Finding a Common Logarithm of a (Positive) Number | 351 | | | 12.11 | Antilogarithm | 353 | | | 12.12 | Method of Calculation in Using Logarithm | 355 | | 13a | Ехр | onential and Logarithmic Functions and Their Derivatives | | | | (Wh | at must you know to learn Calculus?) | 359 | | | 13a.1 | Introduction | 359 | | | 13a.2 | Origin of e | 360 | | | 13a.3 | Distinction Between Exponential and Power Functions | 362 | | | 13a.4 | The Value of e | 362 | | | 13a.5 | 1 | 364 | | | 13a.6 | | 365 | | | 13a.7 | , , | 369 | | | 13a.8 | A Little More About e | 371 | | | 13a.9 | | 373 | | | 13a.10 | e e e e e e e e e e e e e e e e e e e | 375 | | | 13a.11 | 1 | 378 | | | 13a.12 | Exponential Rate of Growth | 383 | | | 13a.13 | 0 1 | 383 | | | 13a.14 | | 385 | | | 13a.15 | Applications of the Function e ^x : Exponential Growth and Decay | 390 | | 13b | | hods for Computing Limits of Exponential and | | | | Log | arithmic Functions | 401 | | | 13b.1 | Introduction | 401 | | | 13b.2 | Review of Logarithms | 401 | | | 13b.3 | | 403 | | | 13b.4 | Evaluation of Limits Based on the Standard Limit | 410 | | 14 | Inver | se Trigonometric Functions and Their Derivatives | 417 | | | 14.1 | Introduction | 417 | | | 14.2 | Trigonometric Functions (With Restricted Domains) and | | | | | Their Inverses | 420 | | | 14.3 | The Inverse Cosine Function | 425 | |-----|-------|--|-----| | | 14.4 | The Inverse Tangent Function | 428 | | | 14.5 | Definition of the Inverse Cotangent Function | 431 | | | 14.6 | Formula for the Derivative of Inverse Secant Function | 433 | | | 14.7 | Formula for the Derivative of Inverse Cosecant Function | 436 | | | 14.8 | Important Sets of Results and their Applications | 437 | | | 14.9 | Application of Trigonometric Identities in Simplification of | | | | | Functions and Evaluation of Derivatives of Functions Involving | | | | | Inverse Trigonometric Functions | 441 | | 15a | Imp | licit Functions and Their Differentiation | 453 | | | 15a.1 | Introduction | 453 | | | | Closer Look at the Difficulties Involved | 455 | | | 15a.3 | The Method of Logarithmic Differentiation | 463 | | | 15a.4 | Procedure of Logarithmic Differentiation | 464 | | 15b | Para | ametric Functions and Their Differentiation | 473 | | | 15b.1 | Introduction | 473 | | | 15b.2 | | 477 | | | 15b.3 | | 480 | | | 15b.4 | | | | | | Form $y = f(x)$ and Parametric Forms $x = f(t)$, $y = g(t)$ | | | | | of the Function | 481 | | | 15b.5 | Derivative of One Function with Respect to the Other | 483 | | 16 | Diffe | rentials "dy" and "dx": Meanings and Applications | 487 | | | 16.1 | Introduction | 487 | | | 16.2 | Applying Differentials to Approximate Calculations | 492 | | | 16.3 | Differentials of Basic Elementary Functions | 494 | | | 16.4 | Two Interpretations of the Notation dy/dx | 498 | | | 16.5 | Integrals in Differential Notation | 499 | | | 16.6 | To Compute (Approximate) Small Changes and | | | | | Small Errors Caused in Various Situations | 503 | | 17 | Deriv | ratives and Differentials of Higher Order | 511 | | | 17.1 | Introduction | 511 | | | 17.2 | Derivatives of Higher Orders: Implicit Functions | 516 | | | 17.3 | Derivatives of Higher Orders: Parametric Functions | 516 | | | 17.4 | Derivatives of Higher Orders: Product of Two Functions | 2.0 | | | | (Leibniz Formula) | 517 | | | 17.5 | Differentials of Higher Orders | 521 | | | 17.6 | Rate of Change of a Function and Related Rates | 523 | | 18 | Appl | ications of Derivatives in Studying Motion in a Straight Line | 535 | | | 18.1 | Introduction | 535 | | | 18.2 | Motion in a Straight Line | 535 | | | | and a budget Line | 222 | | | 18.3
18.4 | Angular Velocity Applications of Differentiation in Geometry | 540
540 | |-----|--|---|------------------| | | 18.5 | Slope of a Curve in Polar Coordinates | 548 | | | | | | | 19a | Increasing and Decreasing Functions and the Sign of the First Derivative | | | | | FIFS | препуацие | 551 | | | 19a.1 | Introduction | 551 | | | 19a.2 | The First Derivative Test for Rise and Fall | 556 | | | 19a.3 | ` ` | 557 | | | 19a.4 | | 565 | | | 19a.5 | | 5.65 | | | | Second Derivative | 567 | | 19b | Max | timum and Minimum Values of a Function | 575 | | | 19b.1 | Introduction | 575 | | | 19b.2 | Relative Extreme Values of a Function | 576 | | | 19b.3 | Theorem A | 580 | | | 19b.4 | Theorem B: Sufficient Conditions for the Existence of a Relative | | | | | Extrema—In Terms of the First Derivative | 584 | | | 19b.5 | | | | | | the Second Derivative) | 588 | | | 19b.6 | | | | | | Interval (Absolute Maximum and Absolute Minimum Values) | 593 | | | 19b.7 | 11 | | | | | Solving Certain Problems Involving the Determination | | | | | of the Greatest and the Least Values | 597 | | 20 | Rolle | 's Theorem and the Mean Value Theorem (MVT) | 605 | | | 20.1 | Introduction | 605 | | | 20.2 | Rolle's Theorem (A Theorem on the Roots of a Derivative) | 608 | | | 20.3 | Introduction to the Mean Value Theorem | 613 | | | 20.4 | Some Applications of the Mean Value Theorem | 622 | | | | | | | 21 | | Generalized Mean Value Theorem (Cauchy's MVT), | | | | L' H | ospital's Rule, and their Applications | 625 | | | 21.1 | Introduction | 625 | | | 21.2 | Generalized Mean Value Theorem (Cauchy's MVT) | 625 | | | 21.3 | Indeterminate Forms and L'Hospital's Rule | 627 | | | 21.4 | L'Hospital's Rule (First Form) | 630 | | | 21.5 | L'Hospital's Theorem (For Evaluating Limits(s) of the | | | | | Indeterminate Form 0/0.) | 632 | | | 21.6 | Evaluating Indeterminate Form of the Type ∞/∞ | 638 | | | 21.7 | Most General Statement of L'Hospital's Theorem | 644 | | | 21.8
21.9 | Meaning of Indeterminate Forms Finding Limits Involving Various Indeterminate Forms | 644 | | | 41.7 | (by Expressing them to the Form $0/0$ or ∞/∞) | 646 | | | | (by Expressing them to the roth 0/0 of 00/00) | 0-1 0 | | 22 | | nding the Mean Value Theorem to Taylor's Formula: or Polynomials for Certain Functions | 653 | |---------|---------|--|-----| | | 22.1 | Introduction | 653 | | | 22.1 | The Mean Value Theorem For Second Derivatives: | 055 | | | | The First Extended MVT | 654 | | | 22.3 | Taylor's Theorem | 658 | | | 22.4 | · · · | 658 | | | 22.5 | From Maclaurin Series To Taylor Series | 667 | | | 22.6 | Taylor's Formula for Polynomials | 669 | | | 22.7 | Taylor's Formula for Arbitrary Functions | 672 | | 23 | Нуре | erbolic Functions and Their Properties | 677 | | | 23.1 | Introduction | 677 | | | 23.2 | Relation Between Exponential and Trigonometric Functions | 680 | | | 23.3 | Similarities and Differences in the Behavior of | | | | | Hyperbolic and Circular Functions | 682 | | | 23.4 | Derivatives of Hyperbolic Functions | 685 | | | 23.5 | Curves of Hyperbolic Functions | 686 | | | 23.6 | The Indefinite Integral Formulas for Hyperbolic Functions | 689 | | | 23.7 | Inverse Hyperbolic Functions | 689 | | | 23.8 | Justification for Calling sinh and cosh as Hyperbolic Functions Just as sine and cosine are Called | | | | | Trigonometric Circular Functions | 699 | | Appendi | x A (l | Related To Chapter - 2) Elementary Set Theory | 703 | | Appendi | ix B (I | Related To Chapter-4) | 711 | | Appendi | ix C (l | Related To Chapter-20) | 735 | | Index | | | 739 |