INTRODUCTION TO DIFFERENTIAL CALCULUS

Systematic Studies with Engineering Applications for Beginners

Ulrich L. Rohde

G. C. Jain

Ajay K. Poddar

A. K. Ghosh

CONTENTS

Forew	ord		xiii
Prefac	e		xvii
Biogra	phies		xxv
Introduction Acknowledgements		xxvii	
		xxix	
1	From Arithmetic to Algebra (What must you know to learn Calculus?)		1
	1.1	Introduction	1
	1.2	The Set of Whole Numbers	1
	1.3	The Set of Integers	1
	1.4	The Set of Rational Numbers	1
	1.5	The Set of Irrational Numbers	2
	1.6	The Set of Real Numbers	2
	1.7	Even and Odd Numbers	3
	1.8	Factors	3
	1.9	Prime and Composite Numbers	3
	1.10	Coprime Numbers	4
	1.11	Highest Common Factor (H.C.F.)	4
	1.12	Least Common Multiple (L.C.M.)	4
	1.13	The Language of Algebra	5
	1.14	Algebra as a Language for Thinking	7
	1.15	Induction	9
	1.16	An Important Result: The Number of Primes is Infinite	10
	1.17	Algebra as the Shorthand of Mathematics	10
	1.18	Notations in Algebra	11
	1.19	Expressions and Identities in Algebra	12
	1.20	Operations Involving Negative Numbers	15
	1.21	Division by Zero	16
2		Concept of a Function	
	(Who	at must you know to learn Calculus?)	19
	2.1	Introduction	19
	2.2	Equality of Ordered Pairs	20
	2.3	Relations and Functions	20
	2.4	Definition	21

	2.5	Domain, Codomain, Image, and Range of a Function	23
	2.6	Distinction Between " f " and " $f(x)$ "	23
	2.7	Dependent and Independent Variables	24
	2.8	Functions at a Glance	24
	2.9	Modes of Expressing a Function	24
	2.10	Types of Functions	25
	2.11	Inverse Function f^{-1}	29
	2.12	Comparing Sets without Counting their Elements	32
	2.13	The Cardinal Number of a Set	32
	2.14	Equivalent Sets (Definition)	33
	2.15	Finite Set (Definition)	33
	2.16	Infinite Set (Definition)	34
	2.17	Countable and Uncountable Sets	36
	2.18	Cardinality of Countable and Uncountable Sets	36
	2.19	Second Definition of an Infinity Set	37
	2.20	The Notion of Infinity	37
	2.21	An Important Note About the Size of Infinity	38
	2.22	Algebra of Infinity (∞)	38
3	Disco	overy of Real Numbers: Through Traditional Algebra	
		t must you know to learn Calculus?)	41
	3.1	Introduction	41
		Prime and Composite Numbers	42
	3.3	The Set of Rational Numbers	43
	3.4	The Set of Irrational Numbers	43
	3.5	The Set of Real Numbers	43
	3.6	Definition of a Real Number	44
	3.7	Geometrical Picture of Real Numbers	44
	3.8	Algebraic Properties of Real Numbers	44
	3.9	Inequalities (Order Properties in Real Numbers)	45
	3.10	Intervals	46
	3.11	Properties of Absolute Values	51
	3.12	Neighborhood of a Point	54
	3.13	Property of Denseness	55
	3.14	Completeness Property of Real Numbers	55
	3.15	(Modified) Definition II (l.u.b.)	60
	3.16	(Modified) Definition II (g.l.b.)	60
4	Fron	n Geometry to Coordinate Geometry	
	(Who	nt must you know to learn Calculus?)	63
	4.1	Introduction	63
	4.2	Coordinate Geometry (or Analytic Geometry)	64
	4.3	The Distance Formula	69
	4.4	Section Formula	70
	4.5	The Angle of Inclination of a Line	71
	4.6	Solution(s) of an Equation and its Graph	76
	4.7	Equations of a Line	83
	4.8	Parallel Lines	89

	4.9	Relation Between the Slopes of (Nonvertical) Lines that are	
		Perpendicular to One Another	90
	4.10	Angle Between Two Lines	92
	4.11	Polar Coordinate System	93
5		nometry and Trigonometric Functions	
	(What	t must you know to learn Calculus?)	97
	5.1	Introduction	97
	5.2	(Directed) Angles	98
	5.3	Ranges of $\sin \theta$ and $\cos \theta$	109
	5.4	Useful Concepts and Definitions	111
	5.5	Two Important Properties of Trigonometric Functions	114
	5.6	Graphs of Trigonometric Functions	115
	5.7	Trigonometric Identities and Trigonometric Equations	115
	5.8	Revision of Certain Ideas in Trigonometry	120
6		About Functions	
	(Wha	t must you know to learn Calculus?)	129
	6.1	Introduction	129
	6.2	Function as a Machine	129
	6.3	Domain and Range	130
	6.4	Dependent and Independent Variables	130
	6.5	Two Special Functions	132
	6.6	Combining Functions	132
	6.7	Raising a Function to a Power	137
	6.8	Composition of Functions	137
	6.9	Equality of Functions	142
	6.10	Important Observations	142
•	6.11	Even and Odd Functions	143
	6.12	Increasing and Decreasing Functions	144
	6.13	Elementary and Nonelementary Functions	147
7a	The	Concept of Limit of a Function	
	(Wh	at must you know to learn Calculus?)	149
	7a.1	Introduction	149
	7a.2	Useful Notations	149
	7a.3	The Concept of Limit of a Function: Informal Discussion	151
	7a.4	Intuitive Meaning of Limit of a Function	153
	7a.5	Testing the Definition [Applications of the ε ,	
		δ Definition of Limit]	163
	7a.6		174
	7a.7		175
	7a.8	One-Sided Limits (Extension to the Concept of Limit)	175
7 k	Met	chods for Computing Limits of Algebraic Functions	
	(Wh	at must you know to learn Calculus?)	177
	7b.1	Introduction	177
	7b.2	Methods for Evaluating Limits of Various Algebraic Functions	178

	7b.3 7b.4 7b.5	Infinite Limits	187 190 192
8		Concept of Continuity of a Function, and Points of Discontinuity to must you know to learn Calculus?)	197
	8.1 8.2 8.3 8.4	Introduction Developing the Definition of Continuity "At a Point" Classification of the Points of Discontinuity: Types of Discontinuities Checking Continuity of Functions Involving Trigonometric, Exponential, and Logarithmic Functions From One-Sided Limit to One-Sided Continuity and its Applications Continuity on an Interval Properties of Continuous Functions	197 204 214 215 224 224 225
9	The I	dea of a Derivative of a Function	235
	9.1 9.2 9.3	Introduction Definition of the Derivative as a Rate Function Instantaneous Rate of Change of $y = f(x)$ at $x = x_1$ and the	235 239
	9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Slope of its Graph at $x = x_1$ A Notation for Increment(s) The Problem of Instantaneous Velocity Derivative of Simple Algebraic Functions Derivatives of Trigonometric Functions Derivatives of Exponential and Logarithmic Functions Differentiability and Continuity Physical Meaning of Derivative Some Interesting Observations Historical Notes	239 246 246 259 263 264 270 271 273
10		ebra of Derivatives: Rules for Computing Derivatives of ious Combinations of Differentiable Functions	275
	10.1 10.2 10.3 10.4 10.5	Introduction Recalling the Operator of Differentiation The Derivative of a Composite Function Usefulness of Trigonometric Identities in Computing Derivatives	275 277 290 300 302
11		sic Trigonometric Limits and Their Applications Computing Derivatives of Trigonometric Functions	307
	11a. 11a. 11a.	2 Basic Trigonometric Limits	307 308 314
11	b Mo	ethods of Computing Limits of Trigonometric Functions	325
	11b. 11b.		325 328

	11b.3	Limits of the Type (II) $[\lim_{x \to a} f(x), \text{ where } a \neq 0]$	332
	11b.4	Limits of Exponential and Logarithmic Functions	335
12	Expo	nential Form(s) of a Positive Real Number and its	
	Loga	rithm(s): Pre-Requisite for Understanding Exponential	
		ogarithmic Functions	
	(Wha	t must you know to learn Calculus?)	339
	12.1	Introduction	339
	12.2	Concept of Logarithmic	339
	12.3	The Laws of Exponent	340
	12.4	Laws of Exponents (or Laws of Indices)	341
	12.5	Two Important Bases: "10" and "e"	343
	12.6	Definition: Logarithm	344
	12.7	Advantages of Common Logarithms	346
	12.8	Change of Base	348
•	12.9	Why were Logarithms Invented?	351
	12.10	Finding a Common Logarithm of a (Positive) Number	351
	12.11	Antilogarithm	353
	12.12	Method of Calculation in Using Logarithm	355
13a	Ехр	onential and Logarithmic Functions and Their Derivatives	
	(Wh	at must you know to learn Calculus?)	359
	13a.1	Introduction	359
	13a.2	Origin of e	360
	13a.3	Distinction Between Exponential and Power Functions	362
	13a.4	The Value of e	362
	13a.5	1	364
	13a.6		365
	13a.7	, ,	369
	13a.8	A Little More About e	371
	13a.9		373
	13a.10	e e e e e e e e e e e e e e e e e e e	375
	13a.11	1	378
	13a.12	Exponential Rate of Growth	383
	13a.13	0 1	383
	13a.14		385
	13a.15	Applications of the Function e ^x : Exponential Growth and Decay	390
13b		hods for Computing Limits of Exponential and	
	Log	arithmic Functions	401
	13b.1	Introduction	401
	13b.2	Review of Logarithms	401
	13b.3		403
	13b.4	Evaluation of Limits Based on the Standard Limit	410
14	Inver	se Trigonometric Functions and Their Derivatives	417
	14.1	Introduction	417
	14.2	Trigonometric Functions (With Restricted Domains) and	
		Their Inverses	420

	14.3	The Inverse Cosine Function	425
	14.4	The Inverse Tangent Function	428
	14.5	Definition of the Inverse Cotangent Function	431
	14.6	Formula for the Derivative of Inverse Secant Function	433
	14.7	Formula for the Derivative of Inverse Cosecant Function	436
	14.8	Important Sets of Results and their Applications	437
	14.9	Application of Trigonometric Identities in Simplification of	
		Functions and Evaluation of Derivatives of Functions Involving	
		Inverse Trigonometric Functions	441
15a	Imp	licit Functions and Their Differentiation	453
	15a.1	Introduction	453
		Closer Look at the Difficulties Involved	455
	15a.3	The Method of Logarithmic Differentiation	463
	15a.4	Procedure of Logarithmic Differentiation	464
15b	Para	ametric Functions and Their Differentiation	473
	15b.1	Introduction	473
	15b.2		477
	15b.3		480
	15b.4		
		Form $y = f(x)$ and Parametric Forms $x = f(t)$, $y = g(t)$	
		of the Function	481
	15b.5	Derivative of One Function with Respect to the Other	483
16	Diffe	rentials "dy" and "dx": Meanings and Applications	487
	16.1	Introduction	487
	16.2	Applying Differentials to Approximate Calculations	492
	16.3	Differentials of Basic Elementary Functions	494
	16.4	Two Interpretations of the Notation dy/dx	498
	16.5	Integrals in Differential Notation	499
	16.6	To Compute (Approximate) Small Changes and	
		Small Errors Caused in Various Situations	503
17	Deriv	ratives and Differentials of Higher Order	511
	17.1	Introduction	511
	17.2	Derivatives of Higher Orders: Implicit Functions	516
	17.3	Derivatives of Higher Orders: Parametric Functions	516
	17.4	Derivatives of Higher Orders: Product of Two Functions	2.0
		(Leibniz Formula)	517
	17.5	Differentials of Higher Orders	521
	17.6	Rate of Change of a Function and Related Rates	523
18	Appl	ications of Derivatives in Studying Motion in a Straight Line	535
	18.1	Introduction	535
	18.2	Motion in a Straight Line	535
		and a budget Line	222

	18.3 18.4	Angular Velocity Applications of Differentiation in Geometry	540 540
	18.5	Slope of a Curve in Polar Coordinates	548
19a	Increasing and Decreasing Functions and the Sign of the First Derivative		
	FIFS	препуацие	551
	19a.1	Introduction	551
	19a.2	The First Derivative Test for Rise and Fall	556
	19a.3	` `	557
	19a.4		565
	19a.5		5.65
		Second Derivative	567
19b	Max	timum and Minimum Values of a Function	575
	19b.1	Introduction	575
	19b.2	Relative Extreme Values of a Function	576
	19b.3	Theorem A	580
	19b.4	Theorem B: Sufficient Conditions for the Existence of a Relative	
		Extrema—In Terms of the First Derivative	584
	19b.5		
		the Second Derivative)	588
	19b.6		
		Interval (Absolute Maximum and Absolute Minimum Values)	593
	19b.7	11	
		Solving Certain Problems Involving the Determination	
		of the Greatest and the Least Values	597
20	Rolle	's Theorem and the Mean Value Theorem (MVT)	605
	20.1	Introduction	605
	20.2	Rolle's Theorem (A Theorem on the Roots of a Derivative)	608
	20.3	Introduction to the Mean Value Theorem	613
	20.4	Some Applications of the Mean Value Theorem	622
21		Generalized Mean Value Theorem (Cauchy's MVT),	
	L' H	ospital's Rule, and their Applications	625
	21.1	Introduction	625
	21.2	Generalized Mean Value Theorem (Cauchy's MVT)	625
	21.3	Indeterminate Forms and L'Hospital's Rule	627
	21.4	L'Hospital's Rule (First Form)	630
	21.5	L'Hospital's Theorem (For Evaluating Limits(s) of the	
		Indeterminate Form 0/0.)	632
	21.6	Evaluating Indeterminate Form of the Type ∞/∞	638
	21.7	Most General Statement of L'Hospital's Theorem	644
	21.8 21.9	Meaning of Indeterminate Forms Finding Limits Involving Various Indeterminate Forms	644
	41.7	(by Expressing them to the Form $0/0$ or ∞/∞)	646
		(by Expressing them to the roth 0/0 of 00/00)	0-1 0

22		nding the Mean Value Theorem to Taylor's Formula: or Polynomials for Certain Functions	653
	22.1	Introduction	653
	22.1	The Mean Value Theorem For Second Derivatives:	055
		The First Extended MVT	654
	22.3	Taylor's Theorem	658
	22.4	· · ·	658
	22.5	From Maclaurin Series To Taylor Series	667
	22.6	Taylor's Formula for Polynomials	669
	22.7	Taylor's Formula for Arbitrary Functions	672
23	Нуре	erbolic Functions and Their Properties	677
	23.1	Introduction	677
	23.2	Relation Between Exponential and Trigonometric Functions	680
	23.3	Similarities and Differences in the Behavior of	
		Hyperbolic and Circular Functions	682
	23.4	Derivatives of Hyperbolic Functions	685
	23.5	Curves of Hyperbolic Functions	686
	23.6	The Indefinite Integral Formulas for Hyperbolic Functions	689
	23.7	Inverse Hyperbolic Functions	689
	23.8	Justification for Calling sinh and cosh as Hyperbolic Functions Just as sine and cosine are Called	
		Trigonometric Circular Functions	699
Appendi	x A (l	Related To Chapter - 2) Elementary Set Theory	703
Appendi	ix B (I	Related To Chapter-4)	711
Appendi	ix C (l	Related To Chapter-20)	735
Index			739