Separation Process Engineering
Includes Mass Transfer Analysis
Third Edition

PHILLIP C. WANKAT
Contents

Preface xvii
Acknowledgments xix
About the Author xxi
Nomenclature xxiii

Chapter 1 Introduction to Separation Process Engineering 1
 1.1. Importance of Separations 1
 1.2. Concept of Equilibrium 2
 1.3. Mass Transfer 4
 1.4. Problem-Solving Methods 5
 1.5. Prerequisite Material 7
 1.6. Other Resources on Separation Process Engineering 7
 1.7. Summary—Objectives 10
 References 10
 Homework 11

Chapter 2 Flash Distillation 13
 2.1. Basic Method of Flash Distillation 13
 2.2. Form and Sources of Equilibrium Data 15
 2.3. Graphical Representation of Binary VLE 18
 2.4. Binary Flash Distillation 22
 2.4.1. Sequential Solution Procedure 23
 Example 2-1. Flash separator for ethanol and water 26
 2.4.2. Simultaneous Solution and Enthalpy-Composition Diagram 28
 2.5. Multicomponent VLE 30
 2.6. Multicomponent Flash Distillation 34
 Example 2-2. Multicomponent flash distillation 39
 2.7. Simultaneous Multicomponent Convergence 42
 Example 2-3. Simultaneous convergence for flash distillation 45
 2.8. Three-Phase Flash Calculations 47
 2.9. Size Calculation 48
 Example 2-4. Calculation of drum size 51
 2.10. Utilizing Existing Flash Drums 53
 2.11. Summary—Objectives 54
 References 54
 Homework 56
 Appendix A. Computer Simulation of Flash Distillation 67
Chapter 3 Introduction to Column Distillation

3.1. Developing a Distillation Cascade
3.2. Distillation Equipment
3.3. Specifications
3.4. External Column Balances
 Example 3-1. External balances for binary distillation
3.5. Summary—Objectives
 References
 Homework

Chapter 4 Column Distillation: Internal Stage-by-Stage Balances

4.1. Internal Balances
4.2. Binary Stage-by-Stage Solution Methods
 Example 4-1. Stage-by-stage calculations by the Lewis method
4.3. Introduction to the McCabe-Thiele Method
4.4. Feed Line
 Example 4-2. Feed line calculations
4.5. Complete McCabe-Thiele Method
 Example 4-3. McCabe-Thiele method
4.6. Profiles for Binary Distillation
4.7. Open Steam Heating
 Example 4-4. McCabe-Thiele analysis of open steam heating
4.8. General McCabe-Thiele Analysis Procedure
 Example 4-5. Distillation with two feeds
4.9. Other Distillation Column Situations
 4.9.1. Partial Condensers
 4.9.2. Total Reboilers
 4.9.3. Side Streams or Withdrawal Lines
 4.9.4. Intermediate Reboilers and Intermediate Condensers
 4.9.5. Stripping and Enriching Columns
4.10. Limiting Operating Conditions
4.11. Efficiencies
4.12. Simulation Problems
4.13. New Uses for Old Columns
4.15. Comparisons between Analytical and Graphical Methods
4.16. Summary—Objectives
 References
 Homework

Appendix A. Computer Simulations for Binary Distillation
Appendix B. Spreadsheets for Binary Distillation
Chapter 11 Economics and Energy Conservation in Distillation

11.1. Distillation Costs 419
11.2. Operating Effects on Costs 425
 Example 11-1. Cost estimate for distillation 430
11.3. Changes in Plant Operating Rates 432
11.4. Energy Conservation in Distillation 433
11.5. Synthesis of Column Sequences for Almost Ideal Multicomponent Distillation 437
 Example 11-2. Sequencing columns with heuristics 440
 Example 11-3. Process development for separation of complex ternary mixture 445
11.7. Summary—Objectives 447
References 447
Homework 449

Chapter 12 Absorption and Stripping 455

12.1. Absorption and Stripping Equilibria 457
12.2. McCabe-Thiele Solution for Dilute Absorption 459
 Example 12-1. McCabe-Thiele analysis for dilute absorber 460
12.3. Stripping Analysis for Dilute Systems 462
12.4. Analytical Solution for Dilute Systems: Kremser Equation 463
 Example 12-2. Stripping analysis with Kremser equation 468
12.5. Efficiencies 469
12.6. McCabe-Thiele Analysis for More Concentrated Systems 470
 Example 12-3. Graphical analysis for more concentrated absorber 472
12.7. Column Diameter 474
12.8. Dilute Multisolutes Absorbers and Strippers 476
12.9. Matrix Solution for Concentrated Absorbers and Strippers 478
12.10. Irreversible Absorption and Co-Current Cascades 482
12.11. Summary—Objectives 484
 References 484
 Homework 485
Appendix. Computer Simulations for Absorption and Stripping 494

Chapter 13 Liquid-Liquid Extraction 499

13.1. Extraction Processes and Equipment 499
13.2. Countercurrent Extraction 503
 13.2.1. McCabe-Thiele Method for Dilute Systems 504
 Example 13-1. Dilute countercurrent immiscible extraction 507

Contents xi
15.2.2. Steady-State Binary Fickian Diffusion and Mass Balances without Convection
 Example 15-1. Steady-state diffusion without convection:
 Low-temperature evaporation
15.2.3. Unsteady Binary Fickian Diffusion with No Convection (Optional)
15.2.4. Steady-State Binary Fickian Diffusion and Mass Balances with Convection
 Example 15-2. Steady-state diffusion with convection:
 High-temperature evaporation

15.3. Values and Correlations for Fickian Binary Diffusivities
15.3.1. Fickian Binary Gas Diffusivities
 Example 15-3. Estimation of temperature effect on Fickian gas diffusivity
15.3.2. Fickian Binary Liquid Diffusivities
15.4. Linear Driving-Force Model of Mass Transfer for Binary Systems
15.4.1. Film Theory for Dilute and Equimolar Transfer Systems
15.4.2. Transfer through Stagnant Films: Absorbers and Strippers
15.5. Correlations for Mass-Transfer Coefficients
15.5.1. Dimensionless Groups
15.5.2. Theoretically Derived Mass-Transfer Correlations
15.5.3. Semi-Empirical and Empirical Mass-Transfer Coefficient Correlations
 Example 15-4. Estimation of mass-transfer coefficients
15.5.4. Correlations Based on Analogies
15.6. Difficulties with Fickian Diffusion Model
15.7. Maxwell-Stefan Model of Diffusion and Mass Transfer
15.7.1. Introductory Development of the Maxwell-Stefan Theory of Diffusion
15.7.2. Maxwell-Stefan Equations for Binary Nonideal Systems
15.7.3. Determining the Independent Fluxes \(N_{ij} \)
15.7.4. Difference Equation Formulations
15.7.5. Relationship between Maxwell-Stefan and Fickian Diffusivities
 Example 15-5. Maxwell-Stefan nonideal binary diffusion
15.7.6. Ideal Ternary Systems
 Example 15-6. Maxwell-Stefan ideal ternary system
15.7.7. Nonideal Ternary Systems
15.8. Advantages and Disadvantages of Different Diffusion and Mass-Transfer Models
15.9. Summary—Objectives
 References
 Homework
 Appendix. Spreadsheet for Example 15-6

Chapter 16 Mass Transfer Analysis for Distillation, Absorption, Stripping, and Extraction

16.1. HTU-NTU Analysis of Packed Distillation Columns
 Example 16-1. Distillation in a packed column
16.2. Relationship of HETP and HTU
16.3. Mass Transfer Correlations for Packed Towers

Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1</td>
<td>Detailed Correlations for Random Packings</td>
<td>675</td>
</tr>
<tr>
<td>Example 16-2. Estimation of H_G and H_L</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>16.3.2</td>
<td>Simple Correlations for the Random Packings</td>
<td>682</td>
</tr>
<tr>
<td>16.4</td>
<td>HTU-NTU Analysis of Absorbers and Strippers</td>
<td>683</td>
</tr>
<tr>
<td>Example 16-3. Absorption of SO_2</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>HTU-NTU Analysis of Co-Current Absorbers</td>
<td>688</td>
</tr>
<tr>
<td>16.6</td>
<td>Prediction of Distillation Tray Efficiency</td>
<td>690</td>
</tr>
<tr>
<td>Example 16-4. Estimation of stage efficiency</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>Mass-Transfer Analysis of Extraction</td>
<td>693</td>
</tr>
<tr>
<td>16.7.1</td>
<td>Mass-Transfer Equations and HTU-NTU Analysis</td>
<td>693</td>
</tr>
<tr>
<td>16.7.2</td>
<td>Calculation of Stage Efficiency in Extraction Mixers</td>
<td>695</td>
</tr>
<tr>
<td>Example 16.5. Conversion of mass-transfer coefficients and estimation of stage efficiency in mixer</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>16.7.3</td>
<td>Area per Volume a and Average Drop Diameter in Mixers</td>
<td>701</td>
</tr>
<tr>
<td>16.7.4</td>
<td>Mixer Mass-Transfer Coefficients</td>
<td>702</td>
</tr>
<tr>
<td>16.7.4.1</td>
<td>Mixer Mass-Transfer Coefficients for Individual Drops (Optional)</td>
<td>702</td>
</tr>
<tr>
<td>16.7.4.2</td>
<td>Mass-Transfer Coefficients for Drop Swarms in Mixers</td>
<td>704</td>
</tr>
<tr>
<td>16.7.4.3</td>
<td>Conservative Estimation of Mass-Transfer Coefficients for Extraction</td>
<td>705</td>
</tr>
<tr>
<td>Example 16-6. Conservative estimation of mixer mass-transfer coefficients</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>16.8</td>
<td>Rate-Based Analysis of Distillation</td>
<td>708</td>
</tr>
<tr>
<td>16.9</td>
<td>Summary—Objectives</td>
<td>712</td>
</tr>
<tr>
<td>References</td>
<td>713</td>
<td></td>
</tr>
<tr>
<td>Homework</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>Appendix. Computer Rate-Based Simulation of Distillation</td>
<td>721</td>
<td></td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Introduction to Membrane Separation Processes</td>
<td>725</td>
</tr>
<tr>
<td>17.1</td>
<td>Membrane Separation Equipment</td>
<td>727</td>
</tr>
<tr>
<td>17.2</td>
<td>Membrane Concepts</td>
<td>731</td>
</tr>
<tr>
<td>17.3</td>
<td>Gas Permeation</td>
<td>733</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Gas Permeation of Binary Mixtures</td>
<td>735</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Binary Permeation in Perfectly Mixed Systems</td>
<td>736</td>
</tr>
<tr>
<td>Example 17-1. Well-mixed gas permeation—sequential, analytical solution</td>
<td>739</td>
<td></td>
</tr>
<tr>
<td>Example 17-2. Well-mixed gas permeation—simultaneous analytical and graphical solutions</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>17.3.3</td>
<td>Multicomponent Permeation in Perfectly Mixed Systems</td>
<td>746</td>
</tr>
<tr>
<td>Example 17-3. Multicomponent, perfectly mixed gas permeation</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Reverse Osmosis</td>
<td>749</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Analysis of Osmosis and Reverse Osmosis</td>
<td>749</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Determination of Membrane Properties from Experiments</td>
<td>755</td>
</tr>
<tr>
<td>Example 17-4. Determination of RO membrane properties</td>
<td>755</td>
<td></td>
</tr>
<tr>
<td>Example 17-5. RO without concentration polarization</td>
<td>757</td>
<td></td>
</tr>
<tr>
<td>17.4.3</td>
<td>Mass-Transfer Analysis to Determine Concentration Polarization</td>
<td>758</td>
</tr>
<tr>
<td>Example 17-6. RO with concentration polarization</td>
<td>760</td>
<td></td>
</tr>
</tbody>
</table>
Example 17-7. Prediction of RO performance with concentration polarization

17.4.4. RO with Concentrated Solutions

17.5. Ultrafiltration (UF)

Example 17-8. UF with gel formation

17.6. Pervaporation (PERVAP)

Example 17-9. Pervaporation: feasibility calculation

Example 17-10. Pervaporation: development of feasible design

17.7. Bulk Flow Pattern Effects

Example 17-11. Flow pattern effects in gas permeation

17.7.1. Binary Cross-Flow Permeation

17.7.2. Binary Co-current Permeation

17.7.3. Binary Countercurrent Flow

17.8. Summary—Objectives

References

Homework

Appendix. Spreadsheets for Flow Pattern Calculations for Gas Permeation

17.A.1. Cross-Flow Spreadsheet and VBA Program

17.A.2. Co-current Flow Spreadsheet and VBA Program

17.A.3. Countercurrent Flow Spreadsheet and VBA Program

Chapter 18 Introduction to Adsorption, Chromatography, and Ion Exchange

18.1. Sorbents and Sorption Equilibrium

18.1.1. Definitions

18.1.2. Sorbent Types

18.1.3. Adsorption Equilibrium Behavior

Example 18-1. Adsorption equilibrium

18.2. Solute Movement Analysis for Linear Systems: Basics and Applications to Chromatography

18.2.1. Movement of Solute in a Column

18.2.2. Solute Movement Theory for Linear Isotherms

18.2.3. Application of Linear Solute Movement Theory to Purge Cycles and Elution Chromatography

Example 18-2. Linear solute movement analysis of elution chromatography

18.3. Solute Movement Analysis for Linear Systems: Thermal and Pressure Swing Adsorption and Simulated Moving Beds

18.3.1. Temperature Swing Adsorption

Example 18-3. Thermal regeneration with linear isotherm

18.3.2. Pressure Swing Adsorption

Example 18-4. PSA system

18.3.3. Simulated Moving Beds (SMB)

Example 18-5. SMB system

18.4. Nonlinear Solute Movement Analysis

18.4.1. Diffuse Waves

Example 18-6. Diffuse wave