PROBLEM SOLVING WITH DATA STRUCTURES USING JAVA™

A MULTIMEDIA APPROACH

Mark Guzdial and Barbara Ericson

College of Computing
Georgia Institute of Technology

PEARSON
Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
Contents

Preface 13

About the Authors 19

1 INTRODUCTION TO JAVA:
OBJECT-ORIENTED PROGRAMMING
FOR MODELING A WORLD 23

1 Objects for Modeling a World 25
 1.1 Making Representations of a World 27
 1.2 Why Java? 33
 Getting Java Set Up 33

2 Introduction to Java 37
 2.1 What's Java About? 37
 2.2 Basic (Syntax) Rules of Java 39
 Declarations and Types 39
 Strings 41
 Object Variables and Primitive Variables 42
 Assignment 44
 Semicolons 44
 Conditionals 44
 Arrays 46
 Iteration 47
 Strings versus Arrays and Substrings 48
 2.3 Using Java to Model the World 48
 Discourse Rules for Java 53
 Defining toString 53
 Defining Student as Subclass of Person 54
 Creating a main() Method 57
 Exploring Inheritance 58
 2.4 Manipulating Pictures in Java 61
 2.5 Exploring Sound in Java 67
 2.6 Exploring Music in Java 68
3 Methods in Java: Manipulating Pictures 73
3.1 Reviewing Java Basics 73
 Assignment 73
 Arrays 75
 Conditionals 75
 Iteration: For each, While, and For 76
3.2 Changing the Picture Class 77
 Pictures Are About Arrays and Pixels 79
 A Method for Decreasing Red 79
 Method with an Input 82
3.3 Methods That Return Something: Compositing Images 84
 Composing by Chromakey 90
3.4 Creating Classes That Do Something 93

4 Objects as Agents: Manipulating Turtles 97
4.1 Turtles: An Early Computational Object 97
4.2 Drawing with Turtles 98
 When Cascades Don't Work 100
 Making Lots of Turtles 101
 Composing Pictures with Turtles 103
4.3 Creating Animations with Turtles and Frames 105
 The Data Structure within FrameSequencer 108
4.4 Making a Slow Moving Turtle with sleep and Exceptions 110

5 Arrays: A Static Data Structure for Sounds 115
5.1 Manipulating Sampled Sounds 115
5.2 Inserting and Deleting in an Array 120
5.3 How Slow Does It Get? 124

2 INTRODUCING LINKED LISTS 127

6 Structuring Music Using Linked Lists 129
6.1 JMusic and Imports 129
6.2 Making a Simple Song Object 134
6.3 Making a Song Something to Explore as a Linked List 135
 Walking through SongNode 143
 Improving insertAfter 147
13.2 Building and Rendering User Interfaces 340
 Building a Simple User Interface 340
 Java Swing Layout Managers: GUI Tree Renderers 344
13.3 Creating an Interactive User Interface 347
 Making Our GUI tree Interactive 349
 Creating a Picture Tool 351
13.4 Running from the Command Line 356

4 SIMULATIONS: PROBLEM SOLVING
WITH DATA STRUCTURES 361

14 Using an Existing Simulation Package 363
 14.1 Introducing Simulations 363
 14.2 Overview of Greenfoot 365
 14.3 Greenfoot Basics 370
 14.4 Creating New Classes 372
 14.5 Breakout 377

15 Introducing UML and Continuous Simulations 387
 15.1 Our First Model and Simulation: Wolves and Deer 387
 Modeling the Wolves and Deer 389
 15.2 Modeling in Objects 390
 15.3 Implementing the Simulation Class 394
 15.4 Implementing a Wolf 397
 15.5 Implementing Deer 402
 15.6 Implementing AgentNode 403
 15.7 Extending the Simulation 404
 Making Hungry Wolves 404
 Writing Results to a File 407
 Getting Results from a Simulation 411

16 Abstracting Simulations: Creating a Simulation Package 413
 16.1 Creating a Generalized Simulation Package 413
 Real Programmers Rarely Build Data Structures 414
Real Programmers Make Models and Choices 415
The Structure of the Simulation Package 416
Using a Linked List from the Java Collection Classes 419
16.2 Re-Making the Wolves and Deer with Our Simulation Package 420
16.3 Making a Disease Propagation Simulation 428
 Exploring Scenarios in Disease Propagation 432
16.4 Walking through the Simulation Package 434
16.5 Finally! Making Wildebeests and Villagers 439
 Going Beyond the Wildebeests 447

17 Discrete Event Simulation 456
17.1 Describing a Marketplace 456
17.2 Differences between Continuous and Discrete Event Simulations 457
 Introducing Resources 458
17.3 Different Kinds of Random 458
 Random Distributions in the World 459
 Generating Different Random Distributions 460
 Generating Useful Random Distributions 466
17.4 Ordering Events by Time 469
 Sorting Objects 473
 Inserting into a Sorted List 474
 Using a Min-Heap 475
17.5 Implementing a Discrete Event Simulation 477
 Building a Discrete Event Simulation 480
17.6 The Final Word: The Thin Line between Structure and Behavior 493

Bibliography 497

Index 499