Handbook of Bioplastics and Biocomposites: Engineering Applications

Edited by
Srikanth Pilla
Wisconsin Institute for Discovery
University of Wisconsin-Madison, USA
Contents

Foreword by Amar K. Mohanty xix
Preface xxi
List of Contributors xxiii

1. Engineering Applications of Bioplastics and Biocomposites – An Overview 1
 Srikanth Pilla
 1.1 Introduction 1
 1.1.1 Bioplastics 2
 1.1.2 Biocomposites 2
 1.2 Engineering Applications of Bioplastics and Biocomposites 3
 1.2.1 Processing of Bioplastics and Biocomposites 4
 1.2.2 Packaging Applications of Bioplastics and Biocomposites 6
 1.2.3 Civil Engineering Applications of Bioplastics and Biocomposites 7
 1.2.4 Biomedical Applications of Bioplastics and Biocomposites 9
 1.2.5 Automotive Applications of Bioplastics and Biocomposites 11
 1.2.6 General Engineering Applications of Bioplastics and Biocomposites 12
 1.3 Conclusions 13
 References 14

Part 1: Processing of Bioplastics and Biocomposites

2. The Handling of Various Forms of Dry Ingredients in Bioplastics Manufacturing and Processing Applications 19
 Andy Kovats
 2.1 Introduction 19
 2.2 Ingredient Properties Affecting Feedrates and Dry Ingredients Handling 20
 2.2.1 Name 20
 2.2.2 Bulk Density 20
 2.2.3 Compressibility 21
 2.2.4 Particle Form 21
 2.2.5 Particle Size 21
 2.2.6 Angle of Repose 21
 2.2.7 Angle of Slide 21
Contents

2.2.8 Packing and Compaction 22
 2.2.8.1 Packing, By Pressure 22
 2.2.8.2 Compacting, By Vibration 22

2.2.9 Moisture Content 22

2.3 Storage Hoppers and Ingredient Activation 22
 2.3.1 Vibration 22
 2.3.2 Internal Stirring Agitation 22
 2.3.3 Concentric Screw Agitation 24
 2.3.4 External Agitation (Flexible Hopper) 24

2.4 Volumetric Feeders 26
 2.4.1 Single Screw Feeders – Sizing and Feed Rate Calculation 27
 2.4.1.1 Screw Sizing 27
 2.4.1.2 Screw Fill Efficiency 27
 2.4.1.3 Feed Rate Calculation 28
 2.4.1.4 Feeder Selection 28
 2.4.1.5 Spiral Screw 29
 2.4.1.6 Blade Screw 30
 2.4.2 Twin Screw Feeders 30
 2.4.2.1 Twin Concave Screws 30

2.5 Vibrating Tray Feeders 31

2.6 Belt Feeders 32

2.7 Loss-In-Weight Feeders 34
 2.7.1 Scale 34
 2.7.2 Feed Device 34
 2.7.3 Weigh Hopper 36
 2.7.4 Feeder Controller 36
 2.7.5 Refill Device 36
 2.7.6 Principle of Operation—Continuous Feeding from a Loss-In-Weight Feeder 36
 2.7.7 Loss-In-Weight Feeding Helpful Comments 37
 2.7.7.1 Refilling a Loss-In-Weight Feeder 37
 2.7.7.2 Venting a Loss-In-Weight Feeder 37
 2.7.7.3 In Plant Vibration Effects on Feeder Performance 38
 2.7.7.4 Temperature Effects in Feeder Performance 38
 2.7.7.5 Scale Stabilization Time 38
 2.7.7.6 Flexible Connections 39

2.8 Special Feeders for BioPlastics Ingredients 39
 2.8.1 Bio Ingredients—Typical Physical Characteristics 39
 2.8.2 The Physical Characteristics Aggravate Controlled Rate Feeding 39
 2.8.3 Fibers Need to be Tested in Feeders to Determine How They Can Be Fed 40
 2.8.3.1 Start with a Traditional Feeding Device, Example a Screw Feeder 40
3. Modeling the Processing of Natural Fiber Composites Made
Using Liquid Composite Molding
Reza Masoodi and Krishna M. Pillai

3.1 Introduction to Liquid Composite Molding (LCM) Processes
3.2 Introduction to the Use of Bio-fibers and Bio-resins in Polymer Composites
3.3 Physics for Modeling Mold-filling in LCM Processes
3.3.1 Modeling Single-phase Fluid Flow in Porous Media
3.3.2 Modeling LCM Mold Filling in Synthetic Fiber Mats
3.3.3 Modeling LCM Mold Filling in Natural Fiber Mats
3.3.3.1 Swelling of Natural Fiber Mats in Organic Resins
3.3.3.2 Some Recent Studies on Changes in Permeability of Natural-Fiber Mats Due to Liquid Absorption and Swelling
3.3.3.3 Mold Filling Modeling in Natural-fiber Mats After Including the Swelling of Fibers Due to Liquid Absorption
3.3.4 Constant Inlet-Pressure Injection Solution
3.3.5 Constant Flow-rate Injection Solution
3.4 Numerical Simulation
3.4.1 Mold Filling Simulation in Non-swelling Fiber Mats
3.4.2 Recent Developments in LCM Mold Filling Simulation in the Swelling Natural-fiber Mats
3.5 Summary and Conclusions

Part 2: Packaging Applications

4. Bioplastics Based Nanocomposites for Packaging Applications
 J. Soulestin, K. Prashantha, M.F. Lacrampe and P. Krawczak
4.1 Introduction
4.2 Definitions and Classification
4.3 Biopolymers Based Packaging Materials
4.3.1 Poly Lactic Acid (PLA)
4.3.2 Starch Based Materials
4.3.3 Poly Hydroxyalkanoates (PHA)
4.3.4 Proteins
4.4 Structure of Bio-nanocomposites
4.4.1 Bio-nanocomposites for Packaging Applications
4.4.2 Structure of Nanocomposites Based on Natural Nanofillers
4.4.2.1 Layered Silicate Filled Nanocomposites
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2.2</td>
<td>Cellulose Nanoparticles Filled Nanocomposites</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Starch Nanocrystals Filled Nanocomposites</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Properties of Bio-nanocomposites</td>
<td>88</td>
</tr>
<tr>
<td>4.5.1</td>
<td>PLA Based Bio-nanocomposites</td>
<td>89</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>Mechanical Properties</td>
<td>89</td>
</tr>
<tr>
<td>4.5.1.2</td>
<td>Barrier Properties</td>
<td>94</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Starch Based Nanocomposites</td>
<td>95</td>
</tr>
<tr>
<td>4.5.5.1</td>
<td>Elaboration Processes</td>
<td>96</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Effect of the Surfactant and Plasticizer on the Structure</td>
<td>97</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Mechanical properties</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2.4</td>
<td>Barrier Properties</td>
<td>106</td>
</tr>
<tr>
<td>4.5.2.5</td>
<td>Optical Properties</td>
<td>109</td>
</tr>
<tr>
<td>4.5.3</td>
<td>PHA Based Bio-Nanocomposites</td>
<td>109</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Proteins Based Nanocomposites</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>115</td>
</tr>
<tr>
<td>5.</td>
<td>Biobased Materials in Food Packaging Applications</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>5.2</td>
<td>Biobased Packaging Materials</td>
<td>123</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Polymers Produced from Biomass</td>
<td>125</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Polymers from Bio-derived Monomers</td>
<td>128</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Polymers Produced from Micro-organisms</td>
<td>129</td>
</tr>
<tr>
<td>5.3</td>
<td>Properties of Packaging Materials</td>
<td>131</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Gas Barrier Properties</td>
<td>133</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Moisture Barrier Properties</td>
<td>138</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Mechanical and Thermal Properties</td>
<td>139</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Biodegradability</td>
<td>141</td>
</tr>
<tr>
<td>5.4</td>
<td>Packaging Products from Biobased Materials</td>
<td>141</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Blown Films</td>
<td>142</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Foamed Products</td>
<td>143</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Thermoformed Containers</td>
<td>145</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Adhesives</td>
<td>145</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Coated Paper</td>
<td>146</td>
</tr>
<tr>
<td>5.5</td>
<td>Food Applications</td>
<td>148</td>
</tr>
<tr>
<td>5.6</td>
<td>Nanotechnology</td>
<td>152</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusions</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>6.</td>
<td>Polylactic Acid (PLA) Foams for Packaging Applications</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>161</td>
</tr>
<tr>
<td>6.2</td>
<td>Polylactic Acid (PLA) Foam Overview</td>
<td>162</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Extruded Foam</td>
<td>162</td>
</tr>
</tbody>
</table>
6.2.2 Particle (Bead) Foam 164
6.2.3 "Sheet" Foam 168
6.3 Foam Properties 168
6.3.1 Thermal Insulation 169
6.3.2 Mechanical Properties 169
6.3.3 Heat Deflection Temperature 171
6.4 Conclusions 172
References 173

7. Polyvinyl Modified Guar-gum Bioplastics for Packaging Applications 177
Hisatoshi Kobayashi and Dohiko Terada
7.1 Introduction 177
7.2 Structure and Physical Properties of Guar Gum 178
7.3 Modification of Guar Gum 180
7.3.1 Derivatization of Functional Groups 180
7.3.2 PVS Modified Guar Gum 181
7.4 Characterization 184
7.5 Conclusions and Future Challenges 186
Acknowledgements 186
References 187

8. Starch Based Composites for Packaging Applications 189
K. M. Gupta
8.1 Introduction 189
8.1.1 Starch: History, Characteristics and Structure 190
8.1.2 Different Sources of Starch and Modified Starches 192
8.1.3 Processing of Starch before Using as Matrix in Composite 193
8.1.4 Improving the Properties of Starch 194
8.2 Composite Materials 195
8.2.1 Advantages and Limitations of Composites 195
8.2.2 Classification of Starch-Based Biocomposites 196
8.2.3 Particulate Biocomposites 198
8.2.4 Flake Biocomposites 198
8.2.5 Hybrid Biocomposites 198
8.2.6 Sandwich Biocomposites 199
8.3 Biopolymers/Biodegradable Polymers for use as Matrix of the Composite 200
8.3.1 Important Bio-Polymers 201
8.3.2 Biodegradable Polymers from Starch and Cellulose 201
8.3.3 Biodegradable Thermoplastic Polymer: Polylactic Acid (PLA) 202
8.4 Starch as a Source of Bio-Polymer (Agro-Polymer) 203
8.4.1 Aliphatic Polyester-Grafted Starch 207
8.5 Fibers 208
8.5.1 Natural Fibers 208
8.6 Mechanics of Fiber Composite Laminates 212
 8.6.1 Rule of Mixture for Unidirectional Biocomposites Lamina 212
 8.6.2 Generalized Hooke’s Law and Elastic Constants 216
8.7 Introduction to Packaging and its Functions 216
 8.7.1 Characteristics of a Good Packaging Material 217
 8.7.2 Vivid Kinds of Packaging Materials and their Applications 217
 8.7.3 Necessity of Biodegradable Packaging in Food Industry 219
8.8 Starch Based Packaging Materials 219
 8.8.1 Bio-degradable Packaging from Agricultural Feed Stocks 220
8.9 Flexible, Active and Passive, and Intelligent Packagings 221
 8.9.1 Necessity of Active and Intelligent Packaging 222
8.10 Testing Standards/Norms for Packaging 222
8.11 Recent Advances in Starch Based Composites for Packaging Applications 226
8.12 Plasticized Starch and Fiber Reinforced Composites for Packaging Applications 226
 8.12.1 Plasticized Wheat Starch (PWS) and Cellulose Fibers Composites for Packaging Applications 226
 8.12.2 Biodegradable Packing Materials based on Waste Collagen Hydrolysate Cured with Dialdehyde Starch 227
 8.12.3 Novel Starch Thermoplastic/Bioglass® Composite 228
 8.12.4 Bio-Based Polymer Composites Using Poly-Lactic Acid 229
 8.12.5 Protein-Starch Based Plastic Produced by Extrusion and Injection Molding 229
 8.12.6 Mechanical Properties of Starch Modified by Ophiostoma SPP for Food Packaging Industry 230
 8.12.7 Functional Properties of Extruded Starch Acetate Blends 231
 8.12.8 Thermoplastic Starch and Bacterial Cellulose Based Biocomposite 231
 8.12.9 Starch/Rubber Composites 232
 8.12.10 Fiber-Reinforced PLA Composites 232
 8.12.11 Biodegradation of Starch and Polulactic Acid-Based Materials 233
 8.12.12 Bacterial Cellulose Fiber-Reinforced Starch Biocomposites 233
 8.12.13 Starch-based Completely Biodegradable Polymer Materials 234
 8.12.14 Maleated-Polycaprolactone/Starch Composite 235
8.13 Starch Based Nanocomposites for Packaging Applications 235
 8.13.1 Biodegradable Starch-based Nano-clay Composites 235
 8.13.2 MMT-Filled Potato Starch Based Nanocomposites 236
 8.13.3 Sweet Potato Starch/OMMT Nanocomposite for Packaging Application 236
 8.13.4 Biocomposites from Wheat Straw Nanofibers 237
 8.13.5 Cellulose Nanocomposites with Starch Matrix 238
8.14 Starch Foam, Film, and Coated Composites for Packaging Applications

8.14.1 Blended Composite Film of Chitosan and Starch 238
8.14.2 PHB Matrix with Potato Starch and Thermo-cell Filled Biocomposites for Films and Coatings 239
8.14.3 Jute and Flax-Reinforced Starch Based Composite Foams 240
8.14.4 Egg Albumen-Cassava Starch Composite Films Containing Sunflower-Oil Droplets 240
8.14.5 Starch Based Loose-Fill Packaging Foams 241
8.14.6 Chemically Modified Starch (RS4)/PVA Blend Films 241
8.14.7 Starch/Polycaprolactone Films 242

8.15 Effects of Various Parameters on Behavior of Packaging Purpose Biocomposites

8.15.1 Influence of Fibers on Mechanical Properties of Cassava Starch Foam 242
8.15.2 Water Absorption Behavior of Oil Palm Fiber-Low Density Polyethylene Packaging Purpose Composites 244
8.15.3 Hygroscopic Effect on PHB Matrix with Potato Starch Biocomposites for Food Packaging 244
8.15.4 Effect of Degradation and Mineralization of Starch in Different Media 246
8.15.5 Effect of Blending of Chitosan and Starch 246
8.15.6 Effect of Starch Composition on Structure of Foams 247

8.16 Characterization of Biocomposites

8.16.1 Characterization of Starch/OMMT Nanocomposites for Packaging Applications 248
8.16.2 Characterization of Blend Film of Chitosan Starch 251
8.16.3 Morphological and Thermomechanical Characterization of Thermoplastic Starch/ Monomorillonate Nanocomposites 253

8.17 Composite Manufacturing Methods

8.17.1 Prepreg Lay-up Process 255
8.17.2 Wet Lay-up (or Hand Lay-up) Process 255
8.17.3 Thermoplastic Pultrusion Process 255
8.17.4 Starch Wet Milling Process 256
8.17.5 Comparison of Various Manufacturing Processes 256

8.18 Futuristic Research Outlook 259

8.19 Glossary of Terminology

Acknowledgements 261
References 262

Part 3: Civil Engineering Applications

9. Vegetable Oil Based Rigid Foam Composites 269

Venkata Chevali, Michael Fuqua and Chad A. Ulven

9.1 Rigid Foam Composites 269
9.2 Biofoams 270
 9.2.1 Reactant Chemistry 272
 9.2.2 Environmental Impact 274
9.3 Production Methods 275
 9.3.1 Mold Casting 275
 9.3.2 Reaction Injection Molding 276
 9.3.3 Slabstock Molding 276
9.4 Reinforcement Effects 277
 9.4.1 Short Fiber/Fillers 277
 9.4.2 Long Fiber 279
9.5 Applications/Case Study 280
 9.5.1 Potential Industry Utilization 280
 9.5.2 Mass Transit Application Case Study 280
References 282

10. Sustainable Biocomposites Based for Construction Applications 285
 Hazizan Md Akil and Adlan Akram Mohamad Mazuki
10.1 Introduction 285
 10.1.1 Polymer Matrix Composites (PMC’s) 285
10.2 Problem Statement 286
 10.2.1 Minimum Environmental Impact 286
 10.2.2 Water and Humidity Issues 286
 10.2.3 Processing of Fiber Reinforced Polymer Composites (FRP) 287
10.3 Case study: Fabrication, Characterization and Properties of Pultruded Kenaf Reinforced Composites 288
 10.3.1 Raw Materials 288
 10.3.2 Fiber Chemical Treatment 288
 10.3.3 Preparation of Pultruded Composites 289
 10.3.4 Testings
 10.3.4.1 Fiber Bundle Tensile Test 289
 10.3.4.2 Flexural Testing 290
 10.3.4.3 Dynamic Mechanical Analysis (DMA) 290
 10.3.4.4 Degradation Test 290
 10.3.4.5 Scanning Electron Microscopy (SEM) 291
10.4 Result and Discussions 291
 10.4.1 Single Kenaf Fiber 291
 10.4.1.1 Morphological Study of Kenaf Fiber 291
 10.4.1.2 Fourier Transmission Infrared (FTIR) Analysis 292
 10.4.1.3 Fiber Bundle Tensile Test 294
 10.4.2 Pultruded Composites 295
 10.4.2.1 Apparent Density of Composite and Void Content 295
 10.4.2.2 Flexural Test 296
 10.4.2.3 Dynamic Mechanical Analysis (DMA) 299
 10.4.2.4 Thermogravimetric Analysis (TGA) 309
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.3</td>
<td>Degradation Test</td>
<td>312</td>
</tr>
<tr>
<td>10.4.3.1</td>
<td>Water Absorption Behavior</td>
<td>312</td>
</tr>
<tr>
<td>10.4.3.2</td>
<td>Morphological Assessment</td>
<td>313</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>314</td>
</tr>
<tr>
<td>11.</td>
<td>Starch as a Biopolymer in Construction and Civil Engineering</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Chandan Datta</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Chemicals used in Concrete</td>
<td>320</td>
</tr>
<tr>
<td>11.2</td>
<td>Starch as a Biopolymer</td>
<td>320</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Thermoplastic Starch Products</td>
<td>326</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Starch Synthetic Aliphatic Polyester Blends</td>
<td>327</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Starch and PBS/PBSA Polyester Blends</td>
<td>328</td>
</tr>
<tr>
<td>11.3</td>
<td>Starch-plastic Composite Resins and Profiles made by Extrusion</td>
<td>328</td>
</tr>
<tr>
<td>11.4</td>
<td>Construction Industry – Starch and its Derivatives as Construction Material</td>
<td>329</td>
</tr>
<tr>
<td>11.5</td>
<td>Setting Behavior</td>
<td>333</td>
</tr>
<tr>
<td>11.6</td>
<td>Rheological Measurement of Cements</td>
<td>334</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Other Specific Applications</td>
<td>334</td>
</tr>
<tr>
<td>11.6.1.1</td>
<td>Joint Composition Including Starch</td>
<td>334</td>
</tr>
<tr>
<td>11.6.1.2</td>
<td>Starch Ether</td>
<td>335</td>
</tr>
<tr>
<td>11.6.2</td>
<td>Plasters</td>
<td>336</td>
</tr>
<tr>
<td>11.6.2.1</td>
<td>Acoustic Construction Panel</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>343</td>
</tr>
</tbody>
</table>

Part 4: Biomedical Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Cellulose Based Green Bioplastics for Biomedical Engineering</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>A.K. Mishra and S.B. Mishra</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Green Bio plastics</td>
<td>347</td>
</tr>
<tr>
<td>12.2</td>
<td>Biomedical Engineering</td>
<td>348</td>
</tr>
<tr>
<td>12.3</td>
<td>Cellulose</td>
<td>349</td>
</tr>
<tr>
<td>12.4</td>
<td>Cellulose Based Bioplastics for Biomedical Engineering</td>
<td>350</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Tissue and Neural Engineering</td>
<td>350</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Pharmaceutical Engineering</td>
<td>352</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Implants</td>
<td>354</td>
</tr>
<tr>
<td>12.5</td>
<td>Concluding Remarks</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>355</td>
</tr>
<tr>
<td>13.</td>
<td>Chitin and Chitosan Polymer Nanofibrous Membranes and Their Biological Applications</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Ahsanulhaq Qurashi</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>357</td>
</tr>
<tr>
<td>13.2</td>
<td>Shape of Polymer Nanostructures</td>
<td>358</td>
</tr>
</tbody>
</table>
13.3 Application of Chitosan Nanofibers
13.3.1 Lipase Immobilization
13.3.2 Antibacterial Activities of Quarternary Chitosan Nanofibers
13.3.3 Wound Dressing
13.3.4 Cellular Compatibility
13.3.5 Bone Tissue Engineering
13.3.6 Skin Regeneration
13.3.7 Liver Functioning
13.4 Conclusion

Part 5: Automotive Applications

14. Biobased and Biodegradable PHBV-Based Polymer Blends and Biocomposites: Properties and Applications

Alireza Javadi, Srikanth Pilla, Shaoqin Gong and Lih-Sheng Turng

14.1 Introduction
14.2 Synthesis of PHBV
14.3 Microcellular Injection Molding
14.4 Thermal Properties
14.5 Thermal Degradation Properties
14.6 Mechanical Properties
14.7 Viscoelastic Properties
14.8 Biocompatibility
14.9 Biodegradability
14.10 Applications
14.11 Conclusion

Acknowledgements
References

15. Bioplastics and Vegetal Fiber Reinforced Bioplastics for Automotive Applications

Daniela Rusu, Séverine A.E. Boyer, Marie-France Lacrampe and Patricia Krawczak

15.1 Introduction
15.1.1 Plastics and Automotive Applications
15.1.2 Definitions of Bioplastics and Biocomposites
15.2 Bioplastics for Automotive Applications
15.2.1 Bio-based Polyamides (PAs) and Copolyamides
15.2.1.1 PA 11
15.2.1.2 Other Commercial Bio-based PAs
15.2.1.3 Bio-based PAs—in R&D State
15.2.1.4 Bio-based Polyether-block-amides (PEBAs)
15.2.1.5 Polyphtalamides (PPAs) 412
15.2.1.6 Conclusion 413

15.2.2 Polyactic Acid (PLA) 413
15.2.2.1 PLA and PLA-based Compounds 413
15.2.2.2 Durability Issues of PLA Components 419
15.2.2.3 Conclusion 422

15.2.3 Bio-based Polyesters and Copolyesters – other than PLA 422
15.2.3.1 PTT from Bio-based 1,3-Propanediol 422
15.2.3.2 PBS from Bio-based Succinic Acid 423
15.2.3.3 Bio-based Thermoplastic Copolyesters and Copolyetheresters 423
15.2.3.4 Conclusion 423

15.2.4 Thermoplastic Starch (TPS) and its Non-biodegradable Blends 424

15.2.5 Bio-based Polyolefins: BioPE and BioPP 425

15.2.6 Bio-based Polyurethanes (PURs) 426
15.2.6.1 Bio-based Thermoplastic Elastomeric Polyurethanes (TPUs) 426
15.2.6.2 Bio-based Thermosetting Polyurethane Foams 427
15.2.6.3 Conclusion 428

15.2.7 Bio-based Thermosetting Resins – Other than Thermosetting Polyurethanes 428
15.2.7.1 Bio-based Unsaturated Polyesters Resins 429
15.2.7.2 Bio-based Epoxy Resins 430
15.2.7.3 Other Bio-based Thermosetting Resins 431
15.2.7.4 Conclusion 431

15.3 Biocomposites Based on Bioplastics for Automotive Applications 431

15.4 Specific Issues Concerning Processing and Recycling 438
15.4.1 Processing 438
15.4.1.1 Bioplastics 438
15.4.1.2 Biocomposites 438
15.4.2 Recycling 439

15.5 General Conclusions 441

References 441

Part 6: General Engineering Applications

16. Cellulose Nanofibers Reinforced Bioplastics and Their Applications 453
 Susheel Kalia, B.S. Kaith and Shalu Vashistha

16.1 Introduction 453
16.2 Cellulose Fibers 454
16.2.1 Sources and Processing Methods 454
16.2.2 Chemical Composition 455
16.2.3 Properties 455
16.3 Bioplastics: Synthesis, Properties and Applications 456
16.4 Cellulose Nanofibers 458
 16.4.1 Methods of Cellulose Nanofibers Production 459
 16.4.1.1 Electrospinning 459
 16.4.1.2 Mechanical & Chemical Defibrillation 459
 16.4.1.3 Bacterial Cellulose Nanofibers 460
 16.4.2 Characterization of Cellulose Nanofibers 461
 16.4.3 Applications of Cellulose Nanofibers 462
16.5 Cellulose Nanofibers Reinforced Bioplastics 465
 16.5.1 Synthesis and Properties of Nanocomposites 465
 16.5.2 Applications of Nanocomposites 467
16.6 Conclusion 467
References 468

17. Nanocomposites Based on Starch and Fibers of Natural Origin 471
 Kestur Gundappa Satyanarayana, Fernando Wypych, Marco Aurelio Woehl, Luiz Pereira Ramos and Rafael Marangoni
17.1 Introduction 471
 17.1.1 Historical Developments 471
 17.1.2 Nanocomposites 474
 17.1.3 Biopolymers 475
 17.1.4 Market, Perspectives, Potentials of and Opportunities in Bionanocomposites 476
17.2 Biomaterials 477
 17.2.1 Cellulose 477
 17.2.2 Bio Matrix Materials 478
 17.2.2.1 Starch 478
 17.2.2.2 Thermoplastic Starch (TPS) 481
 17.2.3 Cellulose Based Nano-bioreinforcements/Fillers 483
 17.2.3.1 Plant-based Cellulose 484
 17.2.3.2 Bacterial Cellulose 486
 17.2.3.3 Preparation of Cellulose Microfibrils/Whiskers 487
 17.2.3.4 Properties of Microfibrils/Whiskers 489
 17.2.3.5 Morphology Studies of Microfibrils/Whiskers 491
17.3 Bionanocomposites Based on Plasticized Starch Reinforced with Plant Based Cellulose/Bacterial Cellulose Nanofibers 493
 17.3.1 Processing Aspects 493
 17.3.1.1 Preparation of the Bionanocomposite Using Plant Based Cellulose 493
 17.3.1.2 Preparation of the Bionanocomposite Films Using Bacterial Cellulose 495
 17.3.2 Properties of Bionanocomposites 496
 17.3.2.1 Properties of the Bionanocomposite Films Using Plant Based Cellulose 496
 17.3.2.2 Properties of the Bionanocomposite Films Using Bacterial Cellulose 497
17.4 Applications and Products of Bionanocomposites 503
18. Biogenic Precursors for Polyphenol, Polyester and Polyurethane Resins 511

Ali Harlin

18.1 Composite Materials 511
 18.1.1 Reaction Polymers 511
 18.1.2 Hybrid Materials and Composites 512

18.2 Biogenic Raw Materials 515
 18.2.1 Sugar Platform 515
 18.2.2 Lipid Platform 515
 18.2.3 Bio-based Aromates 516
 18.2.4 Biogenic Olefin Platform 516

18.3 Glyserols 519
 18.3.1 Glycerol 519
 18.3.2 Epichlorohydrin 519
 18.3.3 Glyceryl Carbonate 519
 18.3.4 Glycerol Formal 520

18.4 Acid Platform 520
 18.4.1 Acrolein 520
 18.4.2 Hydroxy Acids 520
 18.4.2.1 Glycolic Acid 520
 18.4.2.2 3-Hydroxypropionic Acid 521
 18.4.3 Valerolactones 522
 18.4.4 Acrylic Acid 522
 18.4.5 Succinic Acid 522

18.5 Diols 523
 18.5.1 Ethylene Glycol 523
 18.5.2 Propylene Glycol 523
 18.5.3 1,2-Propylene Glycol 525
 18.5.4 1,4-Butanediol (BDO) 525

18.6 Higher Diols 525
 18.6.1 1,5-Pentadiol 525
 18.6.2 Methyl-1,4-butanediol 526
 18.6.3 1,6-Hexanediol 526
 18.6.4 Isosorbide 526

18.7 Polyols 526
 18.7.1 Erythritol 526
 18.7.2 Polyols 527
 18.7.3 Polyglycerols 527
 18.7.4 Polyol Modification 527

18.8 Plastizers 528
 18.8.1 Terpene Phenolic Resin 528
 18.8.2 Sterols 528
18.8.3 Rosin Acids 528
18.8.4 Epoxidized Plant Oils 529
18.9 Furans 529
18.9.1 2,5-Furandicarboxylic Acid 531
18.9.2 2,5-Bis(hydroxymethyl)furan 531
18.9.3 Furfuryl Alcohol 531
18.9.4 Furfural Resins 531
18.10 Terpenes 532
18.10.1 Camphene 533
18.10.2 Limonene 533
18.10.3 Limonene Oxide 534
18.10.4 Terpinolene 534
18.10.5 p-Cymene 534
18.10.6 Benzoazines 535
18.11 Phenols 535
18.11.1 Novolac-type Phenolic Resins 535
18.11.2 Tannins 539
18.11.3 Tannic Acid 539
18.12 Lignin 540
18.12.1 Lignin as Chemical Source 540
18.12.2 Lignin Pyrolysis 541
18.12.3 Lignin Cracking 541
18.12.4 Lignin Oxidation 542
18.13 Conclusions 543
References 544

19. Long Biofibers and Engineered Pulps for High Performance Bioplastics and Biocomposites 555
Alan Fernyhough and Martin Markotsis
19.1 Introduction to Long Fiber Reinforced Plastics and Processes 555
19.2 Introduction to Biofibers, Bioplastics and Biocomposites 557
19.2.1 Biofibers 558
19.2.2 Bioplastics 560
19.2.3 Biocomposites 563
19.3 Natural Fiber Mat & Wood Fiber Sheet Moulding for Composites 564
19.4 Natural Fiber & Wood Fiber Injection Moulding Compounds 568
Acknowledgements 575
References 575

Index 581