Edited by Wolfgang Knoll and Rigoberto C. Advincula

Functional Polymer Films

Volume 2
Characterization and Applications

WILEY-VCH Verlag GmbH & Co. KGaA
Contents of Volume 1

Part I Preparation  1

1 A Perspective and Introduction to Organic and Polymer Ultrathin Films: Deposition, Nanostructruing, Biological Function, and Surface Analytical Methods  3
Rigoberto C. Advincula and Wolfgang Knoll

2 Multifunctional Layer-by-Layer Architectures for Biological Applications  11
Rita J. El-khouri, Rafael Szamocki, Yulia Sergeeva, Olivier Felix, and Gero Decher

3 The Layer-by-Layer Assemblies of Polyelectrolytes and Nanomaterials as Films and Particle Coatings  73
Mi-Kyoung Park and Rigoberto C. Advincula

4 Langmuir–Blodgett–Kuhn Multilayer Assemblies: Past, Present, and Future of the LB Technology  113
Débora T. Balogh, Marystela Ferreira, and Osvaldo N. Oliveira

5 Self-Assembled Monolayers: the Development of Functional Nanoscale Films  151
Andrew C. Jamison, Pawilai Chinwangso, and T. Randall Lee

6 Polyelectrolyte Brushes: Twenty Years After  219
Patrick Guenoun

7 Preparation of Polymer Brushes Using “Grafting-From” Techniques  239
Zhiyi Bao, Ying Zheng, Gregory L. Baker, and Merlin L. Bruening

8 Ultrathin Functional Polymer Films Using Plasma-Assisted Deposition  265
Renate Förch
9 Preparation of Polymer Thin Films by Physical Vapor Deposition 287
Hiroaki Usui

10 Electro-Optical Applications of Conjugated Polymer Thin Films 319
Nicholas Marshall, S. Kyle Sontag, and Jason Locklin

11 Ultrathin Films of Conjugated Polymer Networks: A Precursor Polymer Approach Toward Electro-Optical Devices, Sensors, and Nanopatterning 379
Rigoberto C. Advincula

Part II Patterning 401

12 Nanopatterning and Functionality of Block-Copolymer Thin Films 403
Soojin Park and Thomas P. Russell

13 Patterning by Photolithography 475
Anuja De Silva and Christopher K. Ober

14 Nanopatterning of Polymer Brush Thin Films by Electron-Beam Lithography and Scanning Probe Lithography 501
Tao Chen, Jianming Zhang, Andres Garcia, Robert Ducker, and Stefan Zauscher

15 Direct Patterning for Active Polymers 519
Eunkyoung Kim, Jungmok You, Yuna Kim, and Jeonghun Kim

16 Nanopatterning of Photosensitive Polymer Films 571
Zouheir Sekkat, Hidekazu Ishitoh, Mamoru Tanabe, Tsunemi Hiramatsu, and Satoshi Kawata

Contents of Volume 2

Preface XVII
List of Contributors XIX

Part III Characterization 591

17 Dynamics and Thermomechanics of Polymer Films 593
Benoit Loppinet and George Fytas
17.1 Introduction 593
17.2 Experimental Techniques 594
17.2.1 Dynamic Light Scattering 594
17.2.1.1 Microphoton Correlation Spectroscopy (μ-PCS) and EWDLS 596
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.1.2</td>
<td>Brillouin Light-Scattering Spectroscopy (BLS)</td>
<td>598</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Fluorescence Correlation Spectroscopy (FCS)</td>
<td>599</td>
</tr>
<tr>
<td>17.3</td>
<td>Dynamics</td>
<td>600</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Hydrogel Layers Anchored to Solid Surfaces</td>
<td>600</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Grafted Polymer Brushes</td>
<td>602</td>
</tr>
<tr>
<td>17.3.2.1</td>
<td>Concentration Dynamics</td>
<td>602</td>
</tr>
<tr>
<td>17.3.2.2</td>
<td>Probe Diffusivities Near to Soft Surfaces</td>
<td>605</td>
</tr>
<tr>
<td>17.4</td>
<td>Thermomechanical Properties</td>
<td>607</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Thin Polymer Films</td>
<td>607</td>
</tr>
<tr>
<td>17.4.1.1</td>
<td>Inplane Elastic Properties</td>
<td>607</td>
</tr>
<tr>
<td>17.4.1.2</td>
<td>Out-of-Plane Elastic Properties</td>
<td>610</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Periodic Multilayer Polymer Films</td>
<td>612</td>
</tr>
<tr>
<td>17.4.2.1</td>
<td>Effective Medium and Confinement Effects</td>
<td>612</td>
</tr>
<tr>
<td>17.4.2.2</td>
<td>Interaction Elastic Waves and Structure</td>
<td>614</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Mechanical Anisotropy</td>
<td>616</td>
</tr>
<tr>
<td>17.4.4</td>
<td>One-Dimensional Phononic Films</td>
<td>619</td>
</tr>
<tr>
<td>17.4.5</td>
<td>Particle-Shape Fluctuations (Vibration Modes)</td>
<td>620</td>
</tr>
<tr>
<td>17.5</td>
<td>Conclusion and Outlook</td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>623</td>
</tr>
<tr>
<td>18</td>
<td>Investigations of Soft Organic Films with Ellipsometry</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td><em>Diethelm Johannsmann</em></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>629</td>
</tr>
<tr>
<td>18.2</td>
<td>Modeling</td>
<td>630</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Importance of Angle Measurements</td>
<td>630</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Null-Ellipsometry</td>
<td>631</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Single-Layer Systems</td>
<td>632</td>
</tr>
<tr>
<td>18.2.3.1</td>
<td>Refractive Indices</td>
<td>634</td>
</tr>
<tr>
<td>18.2.3.2</td>
<td>Roughness</td>
<td>635</td>
</tr>
<tr>
<td>18.2.3.3</td>
<td>Anisotropy and Birefringence</td>
<td>636</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Multilayers and Refractive-Index Profiles</td>
<td>637</td>
</tr>
<tr>
<td>18.3</td>
<td>Multiple-Angle Ellipsometry and Total Internal Reflection Ellipsometry</td>
<td>639</td>
</tr>
<tr>
<td>18.4</td>
<td>Fourier-Transform Ellipsometry</td>
<td>641</td>
</tr>
<tr>
<td>18.5</td>
<td>Comparison of Optical and Acoustic Reflectometry</td>
<td>644</td>
</tr>
<tr>
<td>18.6</td>
<td>Summary and Conclusions</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>647</td>
</tr>
<tr>
<td>19</td>
<td>Swelling Behavior of Thin Hydrogel Coatings</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td><em>Ryan Toomey, Ajay Vidyasagar, and Ophir Ortiz</em></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>649</td>
</tr>
<tr>
<td>19.2</td>
<td>Fabrication of Surface-Attached Networks and Characterization</td>
<td>650</td>
</tr>
<tr>
<td>19.3</td>
<td>Thermodynamics of Confined Hydrogels</td>
<td>651</td>
</tr>
</tbody>
</table>
19.4 Thermodynamics of Confined, Responsive Hydrogels 654
19.5 Swelling-Induced Surface Instabilities in Confined Hydrogels 659
19.6 Summary and Concluding Remarks 663
Acknowledgments 664
References 664

20 Scattering Techniques for Thin Polymer Films 669
Gila E. Stein
20.1 Introduction 669
20.2 Structure of Polymer/Polymer Interfaces Revealed by Reflectivity 670
20.3 Block Copolymer Thin Films Measured with Grazing-Incidence Small-Angle X-Ray Scattering 676
20.3.1 GISAXS Patterns of Cylindrical, Hexagonally Perforated Lamellar, and Gyroid Diblock Copolymer Phases 678
20.3.2 Packing Symmetries of Spherical Domain Block Copolymers in Thin Films 679
20.3.3 Controlling Domain Orientations in Lamellar and Cylindrical Phases 681
20.3.4 Rod-Coil Block Copolymers in Thin Films 684
20.3.5 Templated Self-Assembly 684
20.4 Thin Films of Organic Semiconductors Measured with X-Ray Scattering 686
20.4.1 Thin-Film Transistors 686
20.4.2 Polymer Solar Cells 687
20.5 Transmission X-Ray Scattering 688
20.6 Summary 689
References 690

21 Nanostructured Optical Waveguides for Thin-Film Characterization 695
Hatice Duran, K.H. Aaron Lau, Petra J. Cameron, Antonis Gitsas, Martin Steinhart, and Wolfgang Knoll
21.1 Introduction 695
21.2 Experimental Techniques 699
21.2.1 Optical Waveguide Spectroscopy (OWS) Setup 699
21.2.2 Nanoporous Anodic Aluminum Oxide (Nanoporous AAO) 699
21.2.3 TiO₂ Particle Thin Films 700
21.2.4 Polymeric Nanorod Arrays 700
21.3 Theoretical Descriptions 701
21.4 Cylindrical Nanostructures as Optical Waveguides 702
21.4.1 Nanoporous Anodic Aluminum Oxide (AAO) 702
21.4.1.1 Other Types of Nanoporous AAO Optical Sensor Designs 707
21.4.1.2 AAO Waveguide Fabrication Advances 709
21.4.2 PS-co-PMMA Block Copolymers 709
21.4.3 Other Cylindrical Nanoporous Waveguide Materials 710
| 21.5 | Isotropic Mesoporous Waveguides | 711 |
| 21.5.1 | TiO₂ Foam Films | 711 |
| 21.5.2 | OWS Combined with Electrochemical Measurements | 711 |
| 21.5.3 | Dye-Uptake Measurements for Dye-Sensitized Solar Cells (DSSCs) | 713 |
| 21.6 | Nanostructured Nanorod Arrays by Templating Strategies | 714 |
| 21.6.1 | Plasmonic Metallic Nanoarrays | 714 |
| 21.6.2 | Polymeric Nanorod Arrays | 715 |
| 21.7 | Conclusions | 717 |
| Acknowledgments | 717 |
| References | 717 |

| 22 | Electrochemical Surface Plasmon Resonance Methods for Polymer Thin Films | 723 |
| Akira Baba, Futao Kaneko, Rigoberto Advincula, and Wolfgang Knoll |
| 22.1 | Introduction | 723 |
| 22.2 | Electrochemical Surface Plasmon Spectroscopy | 724 |
| 22.3 | Evaluation of Polymer Thin Films by EC-SPR | 725 |
| 22.4 | Electrochemical SPR-SPPL | 728 |
| 22.5 | Electrochemical SPR Microscopy | 730 |
| 22.6 | Simultaneous Electrochemical–Atomic Force Microscopy-SPR | 732 |
| 22.7 | Application to Bio/Chemical Sensors | 736 |
| 22.8 | EC-SPR Method – Grating-Coupling Surface Plasmon Excitation | 739 |
| 22.9 | Combination of Electrochemical-Quartz Crystal Microbalance | 739 |
| 22.10 | Electrochemical SPR under High Pressure | 741 |
| 22.11 | Conclusions | 741 |
| Acknowledgments | 743 |
| References | 743 |

| 23 | Characterization of Molecularly Thin Polymer Layers with the Surface Forces Apparatus (SFA) | 745 |
| Marina Ruths |
| 23.1 | Introduction: Polymer Layers Adsorbed on and Confined between Solid Surfaces | 745 |
| 23.2 | Force Measurements with the Surface Forces Apparatus (SFA) | 746 |
| 23.3 | Forces in Systems with Adsorbing or Nonadsorbing Homopolymer | 748 |
| 23.3.1 | Bridging Interactions | 750 |
| 23.3.2 | Depletion Interactions | 752 |
| 23.4 | Forces in Systems with End-Adsorbed Polymer | 755 |
| 23.5 | Interactions between Dry Polymer Layers: Adhesion | 760 |
| 23.6 | Importance of Polymer Interactions for Applications | 763 |
| Acknowledgments | 763 |
| References | 763 |
24 Biomimetic Thin Films as a QCM-D Sensor Platform to Detect Macromolecular Interactions 771

Nam-Joon Cho and Curtis W. Frank

24.1 Introduction 771

24.2 Brief Overview of Quartz Crystals 772

24.3 QCM Methodologies: Steady-State versus Transient Behavior 773

24.3.1 Sauerbrey Model 774

24.3.2 Voigt–Voinova Model 775

24.4 QCM-D Analysis of Biomimetic Thin Films: Assembly and Applications 776

24.4.1 Design and Characterization of Biomimetic Thin Films 777

24.4.2 Two-Dimensional, Planar Bilayer Platform 781

24.4.3 Intact Vesicle Platform 782

24.4.4 Bilayer-Tethered Vesicle Platform 785

24.4.5 Biological Membrane-on-a-Chip Platform 786

24.5 Conclusion 787

References 788

25 Electrochemical Impedance Spectroscopy (EIS) 791

Renate L.C. Naumann

25.1 Basic Principles 791

25.1.1 Data Presentation 795

25.1.2 Data Analysis 796

25.2 Polymer Films 797

25.2.1 Corrosion-Protective Coatings 797

25.2.2 Ionic Conducting Films 798

25.2.3 Electron-Conducting Films 800

25.2.4 Conductive Films on Semiconductor Supports 802

25.3 Stratified Films 802

25.3.1 Solid-Supported (s)BLMs 802

25.3.2 Polymer-Supported BLMs and tBLMs 803

25.3.3 Ion Transport through Channels Incorporated into a tBLM 803

References 805

26 Characterization of Responsive Polymer Brushes at Solid/Liquid Interfaces by Electrochemical Impedance Spectroscopy 809

Omar Azzaroni and Claudio Gervasi

26.1 Introduction 809

26.2 Electrochemical Impedance Spectroscopy—Basic Principles 809

26.3 Electrochemistry as a Tool to Characterize Thin Polymer Films 812

26.4 Probing the Responsive Properties of Polymer Brushes through EIS Measurements 814

26.5 Molecular Transport within Polymer Brushes Studied by EIS 820

26.6 Time-Resolved EIS Measurements on Responsive Polymer Brushes 827
26.7 Concluding Remarks 828
Acknowledgments 828
References 829

27 X-Ray Photoelectron Spectroscopy of Ultrathin Organic Films 831
Xingyu Gao and Andrew T.S. Wee
27.1 Introduction 831
27.2 Binding Energy 832
27.2.1 Chemical Shifts 834
27.2.2 Band Bending 837
27.3 Angle-Resolved XPS 841
27.3.1 Depth Profiling 841
27.3.2 Photoelectron Diffraction 844
27.4 Photodegradation of Organic Films 851
27.5 Conclusion 851
References 852

Part IV Applications 855

28 Self-Assembled Multifunctional Polymers for Biointerfaces 857
Géraldine Coullerez, Ganna Gorodyska, Erik Reimhult, Marcus Textor, and H. Michelle Grandin
28.1 Introduction 857
28.2 Immobilization and Conformation of Polymers at Biointerfaces 859
28.2.1 Surface Immobilization of Polymers via the “Grafting-To” Method 859
28.2.1.1 Physisorption of Block- and Graft-Copolymers 859
28.2.1.2 Self-Assembled Monolayers (SAMs) 861
28.2.1.3 Chemisorption of End-Functionalized Polymers 861
28.2.2 Surface Immobilization of Polymers via the “Grafting-From” Method: Surface-Initiated Polymerization of Polymer Brushes 862
28.2.3 Conformations of Polymers at Interfaces 863
28.3 Surface Strategies for Bio-Oriented Applications 866
28.3.1 Surface Passivation 866
28.3.1.1 Poly(Ethylene Glycol) Nonfouling Surfaces 866
28.3.1.2 Polyoxazoline Nonfouling Surfaces 870
28.3.1.3 Glycocalyx Mimetics: Polymers with Oligosaccharide Grafts 871
28.3.1.4 Bioinspired Anchorage Strategies for the Attachment of Polymers to Interfaces 872
28.3.2 Bioactive Surfaces 875
28.3.2.1 Biotin-Functionalized Surfaces for (Strept)avidin-Based Immobilization of Biotinylated Biomolecules 875
28.3.2.2 NTA-Functionalized Polymeric Surfaces for Selective and Reversible Binding of Oligo-Histidine-Tagged Proteins 876
30.3.1.2 Nanorods and Nanowires (NWs) 940
30.3.1.3 Nanosheets 941
30.3.2 Organic Nano-Objects 942
30.3.2.1 Polymeric Micelles 942
30.3.2.2 Organic Dyes 944
30.3.2.3 Carbon Nanotubes 946
30.3.2.4 Graphene Oxide (GO) 947
30.3.3 Biological Nano-Objects 948
30.3.3.1 Nucleic Acids 948
30.3.3.2 Proteins 950
30.3.3.3 Viruses 951
30.4 Conclusion 953
References 953

31 Light-Directed Smart Responses in Azobenzene-Containing Liquid-Crystalline Polymer Thin Films 961
Takahiro Seki
31.1 Introduction 961
31.2 Photoalignment of Molecular Aggregates (Nanoscale Regions) 962
31.2.1 Surfactant Aggregate/Silica Nanohybrids 963
31.2.2 Chromonic Dye Aggregate/Silica Nanohybrids 964
31.2.3 Azobenzene (Az)-Containing Liquid-Crystalline Grafted Polymer Films 966
31.3 Block-Copolymer Microphase Separation (MPS) Structure (Mesoscale Region) 967
31.3.1 Photocontrolled Morphological Change of MPS 968
31.3.2 Photoalignment of MPS Structure 970
31.4 Surface-Relief Formation (Microscale Regions) 970
31.4.1 Features of Liquid-Crystalline Polymer Materials 970
31.4.2 Hierarchical Structure Formation in Block-Copolymer Systems 971
31.4.3 Supramolecular Strategy 972
31.4.4 Organic–Inorganic Hybrid Materials 974
31.5 Summary 976
References 978

32 Thin-Film Applications of Electroactive Polymers 983
Jennifer A. Irvin and Katie Winkel
32.1 Introduction 983
32.1.1 Background 983
32.1.2 Common EAPs 984
32.1.3 Polymer Solubility and Processing 985
32.2 Applications 985
32.2.1 Field Effect Transistors 985
32.2.1.1 Background 985
32.2.1.2 Materials for FETs 986
32.2.1.3 Processing Considerations for OFETs 987
32.2.2 Polymer Light-Emitting Devices 988
32.2.2.1 Background 988
32.2.2.2 PLED Emissive Layer Materials 989
32.2.2.3 Processing Advances for PLEDs 990
32.2.3 Photovoltaics 991
32.2.3.1 Background 991
32.2.3.2 Materials for Photovoltaics 992
32.2.3.3 Novel Approaches for Photovoltaic Device Fabrication 992
32.2.4 Electrochromics 993
32.2.4.1 Background 993
32.2.4.2 Materials for Electrochromics 994
32.2.4.3 Electrochromic Device Designs 996
32.2.5 EAP Battery Electrodes 997
32.2.5.1 Background 997
32.2.5.2 EAPs as Battery Materials 997
32.2.6 EAP-Based Electrochemical Capacitors 998
32.2.6.1 Background 998
32.2.6.2 Electrochemical Capacitor Materials 1000
32.2.7 Sensors 1002
32.2.7.1 Background 1002
32.2.7.2 Materials for Sensors 1002
32.2.7.3 Sensor Designs 1002
32.2.8 Miscellaneous Applications 1004
32.2.8.1 Antistatic Coatings 1004
32.2.8.2 Transparent Polymeric Electrodes 1005
32.2.8.3 Corrosion Inhibition 1005
32.3 Conclusions and Future Outlook 1005
Acknowledgments 1006
References 1006

33 Hybrid Nanomaterials in Ultrathin Films: the Sol-Gel Method and
π-Conjugated Polymers 1017
Antonio Francesco Frau and Rigoberto C. Advincula
33.1 Why Hybrid Nanomaterials and Thin Films? 1017
33.2 How to Fabricate Hybrid, Layered, Thin-Film Nanomaterials 1018
33.3 Hybrid Nanomaterials: More than Just “Clay” and “Plastic” 1022
33.4 Sol-Gel Chemistry for Nanostructuring 1023
33.4.1 Basics 1023
33.4.2 Hydrolysis versus Condensation 1025
33.4.3 Sol-Gel Process and Materials Science: the State-of-the-Art 1026
33.5 Conducting Polymers for Nanostructuring 1029
33.5.1 Basics 1029
33.5.2 Electro-Optical Thin-Film Materials 1030
33.5.3 Anticorrosion Coatings 1034