Contents

Preface to the First Edition xiv
Preface to the Third Edition xvii
Acknowledgements xix

Chapter 1. Dimensions, Units, and Conversion Factors 1

1.1 The SI System of Units 1
 1.1.1 Derived Units 2
 1.1.2 Units Outside the SI 3
 1.1.3 Comments on Some Quantities and Their Units 4

1.2 The American Engineering System (AES) of Units 4

1.3 Conversion of Units 6
 1.3.1 Conversion Factor Tables 6
 1.3.2 The Dimension Table 7
 1.3.3 Conversion Equations — Temperature and Pressure 8

1.4 Unit Conversions Using the U-Converter Program 11

1.5 Amount of Substance — the Mole Unit 11

1.6 Density and Concentration 13
 1.6.1 Density 13
 1.6.2 Composition and Concentration 16
 1.6.3 Composition of Gases 18

1.7 Electrical Units 20

1.8 Calculation Guidelines 21

1.9 Summary 22

References and Further Reading 23

Exercises 23

Chapter 2. Thermophysical and Related Properties of Materials 26

2.1 State of a System and Properties of a Substance 26

2.2 The Gibbs Phase Rule 27
 2.2.1 Consequences of the Phase Rule for Non-Reactive and Reactive Systems 27
 2.2.2 Application of the Phase Rule to One-Phase Non-Reactive Systems 28
 2.2.3 Application of the Phase Rule to Multi-Phase Non-Reactive Systems 28
 2.2.4 Application of the Phase Rule to Reactive Systems 29

2.3 The Gas Phase 30
 2.3.1 The Ideal Gas Law 30
 2.3.2 Non-Ideal Gas Behavior 32

2.4 Condensed Phases 34

2.5 Vapor-Liquid Equilibrium (VLE) 35
 2.5.1 Mixtures of Condensable and Non-Condensable Gases 38
 2.5.2 Software for Making Dew Point and Humidity Calculations 39

2.6 Effect of Pressure on Phase Transformation Temperatures 42

2.7 Steam and Air Property Calculators 44
Chapter 4. Calculational Tools and Material Balances 147

4.1 Introduction 147
4.2 Degrees of Freedom (DOF) 148
4.3 Solving Material Balances 150
4.4 Calculational Tools 152
4.5 Using Calculational Tools for Solving Equations 154
4.6 Using Excel as a Calculational Aids 156
4.7 Degree-of-Freedom Analysis 158
4.7.1 DOF Concepts 159
4.7.2 DOF Calculation Strategy for a Single Non-Reactive Device 160
4.7.3 A Washing Process Having Zero Degrees of Freedom 162
4.7.4 A Washing Process Having a DOF = +1 168
4.7.5 A Leaching Process Having a DOF = -1 171
4.8 Using Excel-based Calculational Tools to Solve Equations 174
4.8.1 Goal Seek and Solver as Calculational Aids 174
4.8.2 Software for Conversion of Stream Units: MMV-C 178
4.9 Balances on Systems with Multiple Devices 179
4.10 Extension of Excel's Calculational Tools for Repetitive Solving 194
4.10.1 SuperGS 194
4.10.2 SuperSolver 196
4.11 Special Multiple-Device Configurations I — Recycle and Bypass 197
4.12 Special Multiple-Device Configurations II — Counter-Current Flow 205
4.13 Using FlowBal for Material Balance Calculations 216
4.13.1 FlowBal Example #1: Mixer/Splitter 217
4.13.2 FlowBal Example #2: Evaporation/Condensation Process 219
4.13.3 FlowBal Example #3: Systems with Multi-Phase Streams 221
4.14 Continuous-Mixing Devices 223
4.14.1 Steady-State Processes 223
4.14.2 Unsteady-State Systems 226
4.14.3 Inert Gas Flushing 229
4.15 Graphical Representation of Material Balances 232
4.16 Measures of Performance 232
4.17 Controllers 234
4.18 Summary 239

References and Further Reading 240
Exercises 241

Chapter 5. Stoichiometry and the Chemical Equation 248

5.1 Atomic and Molecular Mass 248
5.2 Composition of Compounds and the Gravimetric Factor 249
5.3 Writing and Balancing Chemical Equations 251
5.3.1 Chemical Reaction Concepts 252
5.3.2 Writing and Balancing Chemical Reactions for Simple Processes 253
5.4 Calculations Involving Excess and Limiting Reactants 256
5.5 Progress of a Reaction 258
5.5.1 Extent of Species Reaction and Rate of Reaction Terminology 258
5.5.2 Chemical Reaction Kinetics 259
5.5.3 Reaction Progress and Keq 263
5.5.4 Keq Values from FREED 264
5.5.5 Guidelines for Using Keq to Determine Maximum Reaction Extent 265
5.5.6 Application of Equilibrium Limitations for Gas-Condensed Phase Reactions 266
5.5.7 Application of Equilibrium Limitations to Gas-Phase Reactions 268
5.6 Practical Indicators of the Progress of Reactions and Processes 269
5.7 Parallel, Sequential and Mixed Reactions 273
5.8 Independence of Chemical Reactions 274
Chapter 5. Reaction Writing and Stoichiometry

5.9 Practical Examples of Reaction Writing and Stoichiometry

5.9.1 Calculations in Gas-Condensed Phase Processes

5.9.2 Calculations in Gas-Phase Processes

5.10 Use of Chemical Reactions in FlowBal

5.10.1 FlowBal's Extent of Reaction Tool

5.10.2 FlowBal's Insert Equation Tool

5.11 Balancing Aqueous (Ionic) Reactions

5.12 Summary

References and Further Reading

Exercises

Chapter 6. Reactive Material Balances

6.1 The General Material Balance Procedure for a Reactive System

6.1.1 Independent Chemical Reactions, Independent Species, and Independent Elements

6.1.2 Molecular Species Material Balance Method

6.1.3 Atomic Species Method

6.1.4 Atomic and Molecular Species Balance Examples

6.2 The Use of Excel-based Computational Tools in Reactive System Balances

6.2.1 Application of SuperSolver

6.2.2 Reactive System Material Balances Using FlowBal

6.3 Combustion Material Balances

6.3.1 Material Balance for the Combustion of a Gaseous Fuel

6.3.2 Combustion of Liquid Fuels

6.3.3 Combustion of Solid Fuels

6.3.4 Use of Feed-Forward and Stack Gas Analysis for Combustion Control

6.3.5 Use of FlowBal for Combustion Calculations

6.3.6 Trace Combustion Products

6.4 The Production of a Reducing Gas

6.5 Gas-Solid Oxidation-Reduction Processes

6.5.1 Oxidation-Reduction During Calcination

6.5.2 The Reduction of Iron Ore Concentrate

6.5.3 The Chemistry of Fluidized Bed Reduction of Iron Ore by Hydrogen

6.5.4 Excel Simulation of the Fluidized Bed Reduction of Hematite

6.5.5 FlowBal Simulation of the Fluidized Bed Reduction of Hematite

6.5.6 Shaft Furnace Reduction of Iron Ore Concentrate

6.5.7 The Roasting of a Sulfide Concentrate

6.6 The Production of Gases with Controlled Oxygen and Carbon Potential

6.7 Processes Controlled by Chemical Reaction Kinetics

6.8 The Reconciliation of an Existing Materials Balance

6.9 The Use of Distribution Coefficients in Material Balance Calculations

6.9.1 Use of Tabulated Distribution Coefficients

6.9.2 Thermodynamic Databases as a Source of Distribution Coefficient Data

6.10 Time-Varying Processes

6.11 Systems Containing Aqueous Electrolytes

6.11.1 The Stability of Ions

6.11.2 Aqueous Processes

6.11.3 The Solubility of Ionizable Gases in Water

6.12 Summary

References and Further Reading

Exercises
Contents

Chapter 7. Energy and the First Law of Thermodynamics 410

7.1 Principles and Definitions 410

7.2 General Statement of the First Law of Thermodynamics 413

7.3 First Law for an Open System 415

7.4 Enthalpy, Heat Capacity, and Heat Content 416

7.5 Enthalpy Change of Phase Transformations 418

7.6 Enthalpy Change of Chemical Reactions 420

7.7 Thermodynamic Databases for Pure Substances 421

7.8 Effect of Temperature on Heat of Reaction 426

7.8.1 Application of Kirchhoff’s Equation to Chemical Reactions 426

7.8.2 Heat of Transformation for Non-Standard and Non-Physical States 428

7.9 The Properties of Steam and Compressed Air 431

7.9.1 Properties of Steam 431

7.9.2 Properties of Compressed Air 432

7.9.3 Temperature Change for Free Expansion of a Gas 433

7.9.4 Cooling by Steam Venting 435

7.9.5 Enthalpy of Psychrometry 436

7.10 The Use of FREED in Making Heat Balances 437

7.11 Heat of Solution 441

7.11.1 Formation of Non-ideal Metallic Solutions 441

7.11.2 Polymeric Solutions 442

7.11.3 Aqueous Solutions 444

7.12 Summary 445

References and Further Reading 446

Exercises 447

Chapter 8. Enthalpy Balances in Non-Reactive Systems 450

8.1 Combined Material and Heat (System) Balances 450

8.2 Heat Balances for Adiabatic Processes 458

8.3 Psychrometric Calculations 462

8.4 Energy Efficiency 468

8.5 Recovery and Recycling of Heat 469

8.5.1 Heat Exchange Between Fluids 469

8.5.2 Heat Exchange between Solids and Fluids 474

8.5.3 Application of Heat Recovery Techniques to Aluminum Melting 474

8.5.4 Heat Exchange Accompanied by Material Transfer 478

8.6 Multiple-Device System Balances 483

8.7 Use of FlowBal for System Balances 488

8.8 Heat Balances Involving Solution Phases 494

8.9 Enthalpy Change During Dissolution of an Electrolyte 496

8.10 Graphical Representation of a Heat Balance 499

8.11 Summary 500

References and Further Reading 501

Exercises 502
List of Examples

Chapter 1. Dimensions, Units, and Conversion Factors

1.1 Mass and Weight of Aluminum 5
1.2 Kinetic Energy 6
1.3 Energy of Lifting 6
1.4 Units of Energy 7
1.5 Dimensions for Flowrate 8
1.6 Conversion of Temperature 9
1.7 Conversion Formula 9
1.8 Conversion of Pressure – I 10
1.9 Conversion of Pressure – II 10
1.10 Pressure in a Liquid 11
1.11 The SI and AES Mole 13
1.12 The Density of a Slurry 14
1.13 Bulk Density of a Solid – I 16
1.14 Bulk Density of a Solid – II 17
1.15 Concentration Conversion 17
1.16 Composition of a Gas on a Wet and Dry Basis 19
1.17 Electrical Flow in a Wire 20
1.18 Electrical Energy for Metal Deposition 20
1.19 Number of Significant Figures 22

Chapter 2. Thermophysical and Related Properties of Material

2.1 Removal of Air by a Vacuum Pump 31
2.2 Gas Volume and Flowrate 31
2.3 Compressibility of Steam 32
2.4 Thermal Expansion of Titanium 34
2.5 Evaporation of Water in a Closed Vessel 36
2.6 Humidity and Dew Point 38
2.7 Moisture Content of Clay Dryer Streams 40
2.8 Effect of Pressure on the Freezing Point of Water 42
2.9 Effect of Pressure on the Vapor Pressure of Water 43
2.10 Vapor and Liquid Phase Composition for the Cu – Ni System 45
2.11 Evaporation from Liquid Cd – Mg Alloys at 700 °C 47
2.12 Volumetric Solubility of CO2 in Water 48
2.13 The Solubility of CaF2 in Water 49

3.1 A Histogram of Ceramic Strength Measurements 57
3.2 Percentiles of the %Cu Data using Excel 61
3.3 Uniformity of Vermiculite Particles 66
3.4 Evaluation of the Normal Distribution for Ceramic Strength Data 74
3.5 Finding a 90% Confidence Interval 84
3.6 Relationship Between Sample Size and Interval Width Using the Si2ON2 Example 85
Contents

3.7 Heat Capacity Systematic Error 88
3.8 Ore Assay 89
3.9 Improving Measurement Precision 91
3.10 The Professor Tries Again 92
3.11 Linear Random Error Propagation 93
3.12 Multiplicative Random Error Propagation 94
3.13 Other Random Error Propagation 94
3.14 The Difference Between Propagation of Random and Systematic Errors 95
3.15 Modeling the Heat Capacity of TiOx 99
3.16 Non-linear Models for the CpTiOx Data 100
3.17 An Asymptotic Model for the Heat Capacity of TiOx 102
3.18 Using the Regression Tool to Find Non-Linear Models 104
3.19 Removing the Thickness Variable from the Galvanized Corrosion Example 107
3.20 Hypothesis Testing for the Galvanized Steel Model with Three Independent Variables 108
3.21 Selecting a Model for the Hydrogen Reduction of NiO 114
3.22 Calculating the Pressure-Catalyst Interaction 124
3.23 Effect of a Fractional Factorial Design: How Much Information is Lost? 135

Chapter 4. Fundamentals of Material Balances with Applications to Non-Reacting Systems

4.1 Distillation of a Cd-Zn Alloy 151
4.2 Charge Calculation for Feed to a Brass Melting Furnace 153
4.3 Vacuum De-Zincing of Lead 153
4.4 Leaching of Salt Cake from Aluminum Recycling 177
4.5 Refining Crude Boric Acid by a Two-Stage Aqueous Process 181
4.6 Recovery of KMnO4 by Evaporation 184
4.7 Removing Dust and SO2 from a Roaster Gas 187
4.8 Absorption of HCl 197
4.9 Preparation of a Pigment Precursor 202
4.10 Removal of CuSO4 from a Pollution Control Residue 208
4.11 Catalyst Reactivation 225
4.12 Dissolution of ZnCl2 228
4.13 Removal of Hydrogen from Steel 230
4.14 Vacuum Refining of a Cd-Zn Alloy 230
4.15 Control Strategy for Upgrading Spent Reducing Gas 235

Chapter 5. Stoichiometry and the Chemical Equation

5.1 Use of the Gravimetric Factor for Silicon 250
5.2 Mineralogical Constituents of a Concentrate 250
5.3 Reduction of Wustite by CO 253
5.4 Production of Molybdenum Carbide 255
5.5 Production of Titanium by the Kroll Process 257
5.6 The Reaction Between Oxygen and Carbon 272
5.7 Reduction of Molybdenum Oxide with Hydrogen 275
5.8 Carbothermic Reduction of Zinc Oxide 276
5.9 Steam Reforming of Methane 278
Chapter 6. Reactive Material Balances
6.1 Production of Sulfur by Reduction of Sulfur Dioxide 302
6.2 Chlorination of Silicon 304
6.3 Application of FlowBal to Stack Gas Desulfurization 314
6.4 Combustion of Natural Gas with XSA 325
6.5 Effect of Oxygen Enrichment on the Oxidant Required for Complete Combustion 326
6.6 Stack Gas Composition and Dew Point for Coal Combustion with Dry Air 328
6.7 Calculation of % Excess Air from Stack Gas Analysis 332
6.8 Calculation of CO, H₂ and NO content in Hot Stack Gas 338
6.9 Calculation of Reformer Gas Composition 342
6.10 Calculation of dpt from Gas Analysis 344
6.11 Calcination of Wet Pickling Cake 347
6.12 Simulation of a Pre-Reduction Fluidized Bed Process 357
6.13 Material Balance on Shaft Furnace Reduction of Hematite 363
6.14 Roasting a Zinc Sulfide Concentrate 369
6.15 Material Balance for BOF Steelmaking 378
6.16 Leaching of Scrubber Dust 395
6.17 The Optimum Precipitation of CaCO₃ by CO₂ 398

Chapter 7. Energy and the First Law of Thermodynamics
7.1 Work and Heat During the Compression of an Ideal Gas 415
7.2 Heat Capacity and Enthalpy for a Flux 417
7.3 Heat of Fusion of Lead 419
7.4 Standard Heat of the Water-Gas Shift Reaction from 800 to 1500 K 427
7.5 Supercooling Liquid Tin 430
7.6 Combustion of CO with Preheated Air 437
7.7 Adiabatic Compression of Steam 438
7.8 Enthalpy Change During Reduction of NiO with C 439
7.9 Temperature Change of an Adiabatic Reaction 440

Chapter 8. Enthalpy Balances in Non-Reactive Systems
8.1 Heat Balance for Melting Aluminum 454
8.2 Heat Balance for Spray Cooling of Hot Air 455
8.3 Fog Cooling of Ceramic Parts 457
8.4 Atomization of a Molten Metal 459
8.5 Dehumidifying Spent Gas from an Iron Ore Reducing Furnace 463
8.6 Using Stack Gas to Dry Cadmium Powder 466
8.7 Heat Exchange in a Waste Heat Boiler 471
8.8 Preheating HCl in a Pebble-Bed Vertical Shaft Heat Exchanger 474
8.9 Lowering the Water Temperature from a Crystallizer 481
8.10 Condensation of Zinc Vapor from a Gas 486
8.11 Production of Distilled Water 492
Chapter 9. System Balances on Reactive Processes

9.1 Heat of Combustion of a Spent Gas from a Reduction Process 513
9.2 Effect of Preheating Combustion Air on AFT 519
9.3 Production of a Reducing Gas 521
9.4 Adiabatic Reforming of Fuel Oil 523
9.5 Oxidation of SO₂ to SO₃ for Sulfuric Acid Production 525
9.6 Metallothermic Reduction of Uranium Tetrafluoride 531
9.7 Lime-Assisted Reduction of Magnetite 539
9.8 Calcination of Magnesium Carbonate 552
9.9 Formation of Nickel Ferrite by Spray Roasting 561

CD Contents

1 CD Content Descriptions
2 Air
3 Atmospheres
4 Charts
5 Combustion Documents
6 Copper Smelting
7 FlowBai and MMV-C
8 Material and Heat Balance Notes
9 NG Combust & Wobbe Index
10 Statistics
11 Steel
12 SuperGoalSeek
13 SuperSolver
14 Thermodynamic Database
15 Unit Conversions