Advances in Rock Dynamics and Applications

Edited by

Yingxin Zhou
Defence Science & Technology Agency (DSTA), Singapore

Jian Zhao
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Table of Contents

Contributing Authors xi
Preface xv

I Introduction

Yingxin Zhou and Jian Zhao

1.1 Scope of rock dynamics 1
1.2 ISRM Commission on Rock Dynamics 3
1.3 About this book 4
References 4

2 An overview of some recent progress in rock dynamics research

Jian Zhao

2.1 Introduction 5
2.2 Stress wave propagation and attenuation 5
2.3 Loading rate effects on rock strength 13
2.4 Numerical modelling of rock dynamic fracturing 18
2.5 Prospects of rock dynamics research 22
References 24

3 Split Hopkinson pressure bar tests of rocks: Advances in experimental techniques and applications to rock strength and fracture

Kaiwen Xia, Feng Dai and Rong Chen

3.1 Introduction 35
3.2 Principles of split Hopkinson pressure bar and new techniques 36
3.3 Dynamic compressive test 41
3.4 Dynamic Brazilian disc test 47
3.5 Dynamic fracture test 54
3.6 Conclusions 73
References 74
4 Modified Hopkinson bar technologies applied to the high strain rate rock tests

*Ezio Cadoni and Carlo Albertini*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>79</td>
</tr>
<tr>
<td>4.2 Principles and functioning of the JRC-MHB with quasi-statically</td>
<td>82</td>
</tr>
<tr>
<td>pre-stressed loading bar</td>
<td></td>
</tr>
<tr>
<td>4.3 Tensile and compressive impact tests of plain concrete with the</td>
<td>85</td>
</tr>
<tr>
<td>JRC-MHB</td>
<td></td>
</tr>
<tr>
<td>4.4 Laboratory measurements of rocks under static multiaxial</td>
<td>97</td>
</tr>
<tr>
<td>compression</td>
<td></td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>103</td>
</tr>
</tbody>
</table>

5 Wave shaping by special shaped striker in SHPB tests

*Xibing Li, Zilong Zhou, Deshun Liu, Yang Zou and Tubing Yin*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>5.2 Advantage of half-sine wave for large diameter SHPB tests</td>
<td>106</td>
</tr>
<tr>
<td>5.3 Generating half-sine waves by special shaped strikers</td>
<td>109</td>
</tr>
<tr>
<td>5.4 SHPB tests with special shaped striker</td>
<td>113</td>
</tr>
<tr>
<td>5.5 Dynamic characteristics of rock obtained from SHPB with</td>
<td>118</td>
</tr>
<tr>
<td>special shaped striker</td>
<td></td>
</tr>
<tr>
<td>5.6 Conclusions</td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td>122</td>
</tr>
</tbody>
</table>

6 Laboratory compressive and tensile testing of rock dynamic properties

*Haibo Li, Junru Li and Jian Zhao*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>6.2 Dynamic compression tests for rock material</td>
<td>126</td>
</tr>
<tr>
<td>6.3 Dynamic tension tests for rock material</td>
<td>134</td>
</tr>
<tr>
<td>6.4 Summary</td>
<td>141</td>
</tr>
<tr>
<td>References</td>
<td>141</td>
</tr>
</tbody>
</table>

7 Penetration and perforation of rock targets by hard projectiles

*Chong Chiang Seah, Tore Børvik, Svein Remseth and Tso-Chien Pan*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>7.2 Terminology</td>
<td>144</td>
</tr>
<tr>
<td>7.3 Existing methods of analysis and prediction</td>
<td>145</td>
</tr>
<tr>
<td>7.4 Penetration and perforation of granite target plates</td>
<td>149</td>
</tr>
<tr>
<td>7.5 Results and discussions</td>
<td>158</td>
</tr>
<tr>
<td>7.6 Concluding remarks</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td>160</td>
</tr>
</tbody>
</table>
8 Incubation time based fracture mechanics and optimization of energy input in the fracture process of rocks
Yuri Petrov, Vladimir Bratov, Grigory Volkov and Evgeny Dolmatov

8.1 Introduction 163
8.2 Modeling interaction of the wave coming from infinity with the crack 164
8.3 The case of a load applied at the crack faces 170
8.4 Conclusions 181
References 182

9 Discontinuous approaches of wave propagation across rock joints
Xiaobao Zhao, Jianbo Zhu, Junang Cai and Jian Zhao

9.1 Introduction 185
9.2 Method of characteristics for one-dimensional P-wave propagation across jointed rock masses 187
9.3 Parametric studies on wave attenuation across parallel joints 193
9.4 Effects of single joint and parallel joints on wave transmission 197
9.5 Outlooks 201
References 204

10 Equivalent Medium Model with Virtual Wave Source Method for wave propagation analysis in jointed rock masses
Jianchun Li, Guowei Ma and Jian Zhao

10.1 Introduction 207
10.2 Conventional effective elastic moduli methods 208
10.3 Equivalent viscoelastic medium model for rock mass with parallel joints 209
10.4 Determination of the parameters 213
10.5 Verifications of EMM with Virtual Wave Source Method 217
10.6 Applications and outlooks 224
10.7 Summary 228
References 228

11 Polycrystalline model for heterogeneous rock based on smoothed particle hydrodynamics method
Guowei Ma, Xuejun Wang and Lei He

11.1 Introduction 231
11.2 Smoothing particle hydrodynamics (SPH) method 232
11.3 Artificial microstructure for multiphase materials 234
11.4 Elasto-plastic damage model 236
11.5 Numerical simulations 241
11.6 Simulations of the uniaxial compression tests 243
# Table of Contents

11.7 Conclusions 249  
References 250  

12 Finite Element Method modeling of rock dynamic failure 253  
*Chun'an Tang and Yuefeng Yang*  
12.1 Introduction 253  
12.2 RFPA dynamic modeling approach 254  
12.3 Transient wave propagation in infinite medium 259  
12.4 Dynamic contact problem 263  
12.5 Influence of stress wave amplitude on rock fracturing process and failure pattern in the Brazilian tensile tests 279  
12.6 Summary 287  
References 288  

13 Discontinuum-based numerical modeling of rock dynamic fracturing and failure 291  
*Tohid Kazerani and Jian Zhao*  
13.1 Introduction 291  
13.2 Discrete Element Method 292  
13.3 Cohesive Fragment Model 294  
13.4 Simulation of compressive and tensile response of rock materials 298  
13.5 Simulation of dynamic fracture response of rock materials 303  
13.6 Conclusions 314  
References 315  

14 Manifold and advanced numerical techniques for discontinuous dynamic computations 321  
*Gaofeng Zhao, Gen-Hua Shi and Jian Zhao*  
14.1 Introduction 321  
14.2 Numerical Manifold Method (NMM) 321  
14.3 eXtended Finite Element Method (XFEM) 324  
14.4 Smoothed Particle Hydrodynamics (SPH) 326  
14.5 FEM/DEM Method 329  
14.6 Discontinuous Galerkin Method (DGM) 331  
14.7 Multi-scale Distinct Lattice Spring Model (m-DLSM) 334  
14.8 Conclusions 341  
References 341  

15 Earthquakes as a rock dynamic problem and their effects on rock engineering structures 345  
*Ömer Aydan, Yoshimi Ohta, Mitsuo Daido, Halil Kumsar, Melih Geniş, Naohiko Takashiki, Takashi Ito and Mehdi Amini*  
15.1 Introduction 345  
15.2 Multi-parameter responses of rocks during fracturing and slippage of discontinuities 347
15.3 Earthquakes and their prediction 358
15.4 Effects of earthquakes on rock engineering structures 379
15.5 Numerical simulations 400
15.6 Conclusions 413
Acknowledgements 416
References 416

16 Constraining paleoseismic PGA using numerical analysis
of structural failures in historic masonry structures:
Review of recent results 423
Yossef H. Hatzor and Gony Yagoda-Biran
16.1 Introduction 423
16.2 Brief summary of DDA theory 424
16.3 Several dynamic DDA validations 426
16.4 Back analysis of stone displacements in old masonry structures 438
16.5 Dynamic deformation in jointed and fractured rock slopes:
the case of Herod's Palace, Masada 445
16.6 Summary and conclusions 454
References 455

17 Explosion loading and tunnel response 457
Yingxin Zhou
17.1 Introduction 457
17.2 Prediction of ground shock loading 458
17.3 Tunnel response 466
17.4 Large-scale testing 471
17.5 Conclusions 479
References 479

18 Rock support for underground excavations subjected
to dynamic loads and failure 483
Charlie Chunlin Li
18.1 Introduction 483
18.2 Rockburst events 483
18.3 Review of previous work 486
18.4 Philosophy of dynamic rock support 487
18.5 Energy-absorbing rock bolts 492
18.6 Dynamic support principles used in some countries 500
18.7 Dynamic testing methods of support elements 501
18.8 Conclusions 504
References 505

List of symbols 507
Subject Index 511