An Invitation to q-Series
From Jacobi's Triple Product Identity to Ramanujan's "Most Beautiful Identity"

Hei-Chi Chan
University of Illinois at Springfield, USA
Contents

Preface
1. Introduction

Part I: Jacobi’s Triple Product Identity
2. First proof (via functional equation)
3. Second proof (via Gaussian polynomials and the \(q \)-binomial theorem)
4. Some applications
5. The Boson-Fermion correspondence
6. Macdonald’s identities

Part II: The Rogers-Ramanujan Identities
7. First proof (via functional equation)
8. Second proof (involving Gaussian polynomials and difference equations)
9. Third proof (via Bailey’s lemma)

v
1
3
5
11
21
31
37
47
53
69

vii
10. Excursus: Mock theta functions

Part III: The Rogers-Ramanujan Continued Fraction

11. A list of theorems to be proven

12. The evaluation of the Rogers-Ramanujan continued fraction

13. A "difficult and deep" identity

14. A remarkable identity from the Lost Notebook and cranks

15. A differential equation for the Rogers-Ramanujan continued fraction

Part IV: From the "Most Beautiful Identity" to Ramanujan’s congruences

16. Proofs of the "Most Beautiful Identity"

17. Ramanujan’s congruences I: analytical methods

18. Ramanujan’s congruences II: an introduction to t-cores

19. Ramanujan’s congruences III: more congruences

20. Excursus: modular forms and more congruences for the partition function

Appendix A Proofs of $\eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)$

Appendix B The ranks of the partitions of $n = 9$

Appendix C The cranks of the partitions of $n = 9$
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliography</td>
<td>213</td>
</tr>
<tr>
<td>Index</td>
<td>225</td>
</tr>
</tbody>
</table>