Waveform Design and Diversity for Advanced Radar Systems

Edited by Fulvio Gini, Antonio De Maio and Lee Patton

The Institution of Engineering and Technology
Contents

Waveform diversity: a way forward to the future of the radar xiii

1 Classical radar waveform design 1
 1.1 Introduction 1
 1.2 Narrow-band signal 4
 1.3 Matched filter and ambiguity function 5
 1.4 Linear frequency modulated pulse 7
 1.5 Phase-coded pulse 9
 1.5.1 Binary sequences 9
 1.5.2 Polyphase sequences 11
 1.6 Coherent pulse train 12
 1.7 Mismatched filters 15
 1.8 Spectral efficiency 15
 1.9 Coherent train of diverse pulses 18
 1.9.1 Complementary pulses 18
 1.9.2 Stepped-frequency pulses 20
 1.10 Frequency-coded waveforms 24
 1.11 Multicarrier waveforms 27
 1.12 Continuous periodic waveforms 30
 1.13 Conclusions 34
 References 34

2 Information theory and radar waveform design 37
 2.1 Introduction 37
 2.2 Information theory and radar waveform design 39
 2.2.1 Mutual information 39
 2.2.2 Mutual information and the Noisy Channel Coding Theorem 40
 2.2.3 Mutual information and radar measurement 42
 2.2.4 Target impulse response 47
 2.2.4.1 Maximum mutual information waveforms 49
 2.2.5 Maximal mutual information waveform design 52
 2.3 Recent work applying information theory to radar 55
 2.4 Summary and conclusions 59
 References 60
3 Multistatic ambiguity function and sensor placement strategies 63
 3.1 Introduction 63
 3.2 Problem formulation 65
 3.3 Multistatic ambiguity function 66
 3.4 Sensor placement in multistatic radar systems 68
 3.5 Conclusions 86
References 87

4 MIMO radar waveform design 89
 4.1 Introduction 89
 4.2 MIMO radar data model and transmission schemes 94
 4.3 FT-CDMA 97
 4.3.1 MIMO CAN waveforms 98
 4.3.2 ZCZ waveforms 102
 4.4 FDMA 108
 4.5 TDMA 108
 4.6 DDMA 111
 4.7 ST-CDMA 113
 4.8 Conclusions 116
References 117

5 Passive bistatic radar waveforms 121
 5.1 Introduction 121
 5.2 The radar equation in bistatic radar 123
 5.3 The ambiguity function in bistatic radar 124
 5.4 Passive bistatic radar waveforms 126
 5.4.1 FM radio 126
 5.4.2 Analogue television 128
 5.4.3 Digital radio and TV 130
 5.4.4 Cell phone networks 130
 5.4.5 Wi-Fi and WiMAX transmissions 132
 5.4.6 Other transmissions 134
 5.4.7 Summary of transmitters 137
 5.5 Examples of passive bistatic radar systems 138
 5.5.1 The signal and interference environment in PBR 138
 5.5.2 PBR processing techniques 140
 5.5.3 Examples of results 142
 5.5.4 Digital transmissions 144
 5.6 Conclusions 144
References 145

6 Biologically inspired waveform diversity 149
 6.1 Introduction 149
 6.2 Waveform types 150
 6.3 Waveform diversity and the ‘feeding buzz’ 155
8.3 Multistatic adaptive pulse compression 212
8.4 MAPC-CLEAN hybridization 216
 8.4.1 Bistatic projection CLEAN 218
 8.4.2 Hybrid CLEAN 220
8.5 Single-pulse range-Doppler imaging 222
8.6 Stepped-frequency radar 225
8.7 Conclusions 227
References 228

9 Optimal channel selection in a multistatic radar system 231
 9.1 Introduction 232
 9.2 Bistatic geometry 233
 9.3 Monostatic and bistatic ambiguity function 235
 9.4 Monostatic and bistatic Cramér–Rao lower bounds 236
 9.5 Ambiguity function and Cramér–Rao lower bounds for a burst of LFM pulses 239
 9.6 Optimal selection of the TX–RX pair 245
 9.7 Conclusions 252
Appendix: Relation between CRLB and AF 253
References 256

10 Waveform design for non-cooperative radar networks 259
 10.1 Introduction 259
 10.2 System model 261
 10.3 Problem formulation 264
 10.3.1 Signal-to-noise ratio 264
 10.3.2 Mutual interference constraints 265
 10.3.3 Energy constraint 267
 10.4 Code design 268
 10.4.1 Equivalent problem formulations 268
 10.4.2 Relaxation and randomization 268
 10.4.3 Approximation bound 269
 10.5 Performance analysis 270
 10.5.1 Maximization of the SNR 271
 10.5.2 Control of the induced interference 275
 10.5.3 Computational complexity 278
 10.6 Conclusions 278
Appendix: Solvability of the optimization problem 279
References 279

11 Waveform design based on phase conjugation and time reversal 283
 11.1 Introduction 283
 11.2 Phase conjugation and time reversal theoretical background 284
 11.2.1 Time reversal invariance in wave propagation 284
x Waveform design and diversity for advanced radar systems

13 Autocorrelation constraints in radar waveform optimization for detection

13.1 Introduction 343
13.1.1 Overview 343
13.1.2 Notation 344
13.1.3 Background 345

13.2 Waveform-optimized performance 346
13.2.1 Detecting a known signal 346
13.2.2 Signal-filter optimization 348
13.2.3 Waveform-only optimization 349
13.2.4 Waveform-optimized performance 350

13.3 Unknown targets in noise 351
13.3.1 Signal model 351
13.3.2 Problem formulation 353
13.3.3 Waveform spectra 354
13.3.4 Choosing a formulation 355

13.4 Examples 355
13.4.1 Overview 355
13.4.2 Dissimilar interference 357
13.4.3 Similar interference 359

13.5 Summary 365

Appendix: Gradients and Jacobians 366

References 373

14 Adaptive waveform design for radar target classification

14.1 Introduction 377

14.2 Waveform design metrics 380
14.2.1 Waveform design for optimized mutual information 381
14.2.2 Waveform design for optimized SNR 386

14.3 Waveform design examples and behaviour 387
14.3.1 Waveform examples 388
14.3.2 Saturation behaviour 391
14.3.3 Enforcing constant modulus 394
14.3.4 Autocorrelation and range sidelobes 395

14.4 Application to radar target classification 396
14.4.1 Modifications for finite-duration targets 397
14.4.2 Spectral variance expression for target ensembles 400
14.4.3 Performance examples 404

References 409

15 Adaptive waveform design for tracking

15.1 Introduction to waveform-agile tracking 413
15.2 Target tracking formulation 415
15.3 Waveform-agile tracking 418
15.4 Waveform-agile tracking using MIMO radar
15.4.1 Signal model for widely separated MIMO radar
15.4.2 CRLB for MIMO widely separated radar and transmission waveform
15.4.3 Waveform-agile MIMO radar tracking
15.4.4 Simulation results
15.5 Waveform-agile tracking in urban terrain
15.5.1 Multipath propagation geometry
15.5.2 Target tracking in urban terrain
15.5.3 Adaptive waveform selection in urban tracking
15.5.4 Simulation results
15.6 Waveform-agile tracking in high clutter urban terrain
15.6.1 Tracking in high clutter urban terrain
15.6.2 Adaptive waveform selection
15.6.3 Simulation results
15.7 Waveform-agile tracking in urban terrain using MIMO radar
15.7.1 MIMO radar signal model and tracking in urban terrain
15.7.2 Adaptive waveform selection
15.7.3 Simulation results
15.8 Conclusions

References

16 Adaptive polarization design for target detection and tracking
16.1 Introduction
16.2 Target detection in heavy inhomogeneous clutter
16.2.1 Polarimetric radar model
16.2.2 Detection test
16.2.3 Target detection optimization
16.3 Polarimetric MIMO radar with distributed antennas for target detection
16.3.1 Signal model
16.3.2 Problem formulation
16.3.3 Detector
16.3.4 Scalar measurement model
16.3.5 Numerical results
16.4 Adaptive polarized waveform design for target tracking based on sequential Bayesian inference
16.4.1 Sequential Bayesian framework for adaptive waveform design
16.4.2 Target dynamic state model and measurement model
16.4.3 Target tracking using sequential Monte Carlo methods
16.4.4 Optimal waveform design based on posterior Cramér–Rao bounds
16.4.5 Numerical examples
17 Knowledge-aided transmit signal and receive filter design in signal-dependent clutter

17.1 Introduction

17.2 System model

17.3 Problem formulation and design issues

17.3.1 Receive filter optimization: solution to problem $P^{(n)}_w$

17.3.2 Radar code optimization: solution to problem $P^{(n)}_r$

17.3.3 Transmit–receive system design procedure

17.4 Performance analysis

17.4.1 Uniform clutter environment

17.4.2 Heterogeneous clutter environment

17.5 Conclusions

Appendix A: Proof of Lemma 17.1
Appendix B: Proof of (17.31)
Appendix C: Proof of Proposition 17.1
Appendix D: Mutual information analysis
Appendix E: Proof of Proposition 17.2
Appendix F: Proof of Lemma 17.4
Appendix G: Proof of Lemma 17.2

Notation

Index