Iron-Containing Enzymes
Versatile Catalysts of Hydroxylation Reactions in Nature

Edited by

Sam P de Visser
The Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK

Devesh Kumar
Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad, India
Contents

Chapter 1 Experimental and Computational Studies on the Catalytic Mechanism of Non-heme Iron Dioxygenases

1

Sam P. de Visser

1.1 Introduction
1

1.2 \(\alpha\)-Ketoglutarate Dependent Dioxygenases (\(\alpha\)KDD) and Halogenases (\(\alpha\)KDH)
3

1.2.1 Taurine/\(\alpha\)-Ketoglutarate Dioxygenase (TauD)
4

1.2.2 AlkB Repair Enzymes
10

1.2.3 Prolyl-4-hydroxylase (P4H)
10

1.2.4 \(\alpha\)-Ketoglutarate Dependent Halogenases (\(\alpha\)KDH)
17

1.3 Cysteine Dioxygenase (CDO)
21

1.4 Isopenicillin \(N\) Synthase (IPNS)
27

1.5 1-Aminocyclopropane-1-carboxylic Acid Oxidase (ACCO)
30

1.6 Rieske Dioxygenases
32

1.7 Extradiol and Intradiol Dioxygenases
34

1.8 Conclusion
35

References
36

Chapter 2 Non-heme Iron-Dependent Dioxygenases: Mechanism and Structure

42

Timothy D. H. Bugg

2.1 Introduction
42

2.2 Dioxygenases Catalysing Oxidative C–C Cleavage Reactions
43

Iron-Containing Enzymes: Versatile Catalysts of Hydroxylation Reactions in Nature
Edited by Sam P de Visser and Devesh Kumar
© Royal Society of Chemistry 2011
Published by the Royal Society of Chemistry, www.rsc.org
2.2.1 Intradiol Catechol Dioxygenases 43
2.2.2 Extradiol Catechol Dioxygenases 46
2.2.3 Carotenoid Cleavage Dioxygenases 49
2.2.4 Oxidative Cleavage of Aliphatic Substrates 50

2.3 Dioxygenases Catalysing Formation of Peroxides: Lipoxygenases 55

2.4 Dioxygenases Catalysing Hydroxylation Reactions 57
 2.4.1 α-Ketoglutarate-Dependent Dioxygenases 57
 2.4.2 Arene (Rieske) Dioxygenases 59

2.5 Conclusion and Summary 62
References 63

Chapter 3 Transient Iron Species in the Catalytic Mechanism of the Archetypal α-Ketoglutarate-Dependent Dioxygenase, TauD 67
Denis A. Proshlyakov and Robert P. Hausinger

3.1 Introduction 67
3.2 Structure of the TauD Active Site 68
 3.2.1 Metal Binding to TauD Apoprotein 69
 3.2.2 Substrate Binding to TauD 70
 3.2.3 Characterization of the NO-Bound Quaternary Complex 71
3.3 The Fe(iv)-oxo Species 72
 3.3.1 Experimental Detection of Fe(iv)-oxo 72
 3.3.2 Electronic Configuration of the Fe(iv)-oxo Species 74
 3.3.3 Hydrogen Atom Abstraction by Fe(iv)-oxo 76
 3.3.4 Thermodynamics of Hydrogen Atom Abstraction by Fe(iv)-oxo 77
3.4 Fe(III)-O(H) Species and Oxygen Transfer 80
3.5 Conclusions 83
Acknowledgements 84
References 84

Chapter 4 Density Functional Theory Studies on Non-heme Iron Enzymes 88
Tomasz Borowski and Per E. M. Siegbahn

4.1 Introduction 88
 4.1.1 Reactions Catalysed by Non-heme Iron Enzymes and their Biological Significance 89
 4.1.2 Iron Binding Sites 91
4.2 Computational Methods 93
4.3 Dioxygen Binding and Generation of Peroxo Intermediates 94
Chapter 5 Theoretical Spectroscopies of Iron-Containing Enzymes and Biomimetics

Shengfa Ye, Gemma J. Christian, Caiyun Geng and Frank Neese

5.1 Introduction 119
5.2 Mössbauer Spectroscopy 120
 5.2.1 Theoretical Prediction of Mössbauer Parameters 121
 5.2.2 Examples from the Literature 123
5.3 Nuclear Resonance Vibrational Spectroscopy 125
 5.3.1 Examples from the Literature 126
5.4 Electron Paramagnetic Resonance 127
 5.4.1 Theoretical EPR Spectroscopy 127
 5.4.2 Examples from the Literature 130
5.5 Absorption Spectroscopy 133
 5.5.1 Theoretical Prediction of Absorption Spectroscopy 133
 5.5.2 Examples from the Literature 134
5.6 X-Ray Spectroscopy 136
 5.6.1 Theoretical Prediction of Metal and Ligand K-Edge Spectra 137
 5.6.2 Examples from the Literature 138
5.7 Conclusion 139
References 140
Chapter 6 Bioinspired Non-heme Iron Catalysts in C–H and C=C Oxidation Reactions 148
Anna Company, Laura Gómez and Miquel Costas

6.1 Biological Precedents 148
 6.1.1 Oxidative Iron Proteins 149
 6.1.2 Cytochrome P450 150
 6.1.3 Rieske Dioxygenases 151

6.2 Non-heme Iron Complexes as Bioinspired Catalysts 154
 6.2.1 Oxidation of Alkanes (C–H Bonds) by Non-heme Iron Complexes 155
 6.2.2 Oxidation of Alkenes (C=C Double Bonds) by Non-heme Iron Complexes 175

6.3 Reaction Mechanisms in Catalytic C–H and C=C Oxidation Reactions Mediated by Complexes with N-Rich Ligands 187
 6.3.1 The Initially Formed FeIII-OOH and its Cleavage Products 187
 6.3.2 Olefin Oxidations: Epoxidation and cis-Dihydroxylation 189
 6.3.3 Alkane Oxidations 198

6.4 Conclusions 201
References 202

Somdatta Ghosh Dey and Abhishek Dey

7.1 Introduction 209
 7.1.1 Magnetic Circular Dichroism (MCD) 212
 7.1.2 X-Ray Absorption Spectroscopy and Extended X-Ray Absorption Fine Structure 223

7.2 MCD of Iron(IV)-oxo Complexes 226
 7.2.1 [FeIV=O(TMC)(NCCH3)]2+ 226
 7.2.2 Iron(IV)-oxo MCD: Varying Axial and Equatorial Ligands 230
 7.2.3 Vibronic Progression in MCD 233

7.3 XAS and EXAFS of Iron(IV)-oxo Intermediates and Synthetic Model Complexes 236
 7.3.1 Enzymatic Catalytic Cycle Intermediates 236
 7.3.2 Model Complexes 245
Chapter 8 Structure, Mechanism and Function of Cytochrome P450 Enzymes
Kirsty J. McLean, Hazel M. Girvan, Amy E. Mason, Adrian J. Dunford and Andrew W. Munro

8.1 Introduction
8.2 Cytochromes P450 – A Brief History
8.3 Optical and Spectroscopic Features
8.4 Cytochrome P450 Catalytic Cycle
8.5 Biological Diversity
8.6 Cytochrome P450 Redox Partner Systems
8.7 Cytochrome P450 Structure
8.8 Physiological Roles of Cytochromes P450
8.9 Cytochrome P450 Medicine and Biotechnology
8.10 Conclusions and Future Prospects

Chapter 9 Drug Metabolism by Cytochrome P450: A Tale of Multistate Reactivity
Devesh Kumar

9.1 Introduction
9.2 Nomenclature of Cytochrome P450 Enzymes
9.3 Types of Drug Interactions
9.3.1 Induction
9.3.2 Inhibition
9.4 Important Isoforms of Human CYP
9.4.1 CYP1A2 Isoform
9.4.2 CYP2C8, CYP2C9 and CYP2C19 Isoforms
9.4.3 CYP2D6 Isoform
9.4.4 CYP3A4 Isoform
9.5 Examples of Generation of Various Metabolites from a Single CYP 450
9.6 CYP 450 Structure
9.7 Catalytic Cycle of CYP 450
9.8 Compound I of CYP 450: The Active Species
9.8.1 Axial Ligand Effect of Compound I
9.9 Reactivity of Compound I
9.10 Aliphatic C–H Hydroxylation by Compound I of CYP 450
9.10.1 Rearrangement Mechanisms of Aliphatic Hydroxylation Reactions
9.11 C=C Epoxidation by Compound I of CYP 450
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12</td>
<td>Sulfoxidation Reaction by Compound I of CYP 450</td>
</tr>
<tr>
<td>9.13</td>
<td>Aromatic Hydroxylation Reaction by Compound I of CYP 450</td>
</tr>
<tr>
<td>9.14</td>
<td>Role of Water Molecule as Biocatalyst</td>
</tr>
<tr>
<td>9.15</td>
<td>Conclusion</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>321</td>
</tr>
<tr>
<td>References</td>
<td>321</td>
</tr>
</tbody>
</table>

Chapter 10 Oxidation of Unnatural Substrates by Engineered Cytochrome P450_{cam}

Saptaswa Sen, Soumen Kanti Manna and Shyamalava Mazumdar

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.2</td>
<td>Binding of the Substrate</td>
</tr>
<tr>
<td>10.3</td>
<td>CYP 450<sub>cam</sub> Reaction Cycle</td>
</tr>
<tr>
<td>10.4</td>
<td>Rational Design of the Active Site of CYP 450<sub>cam</sub></td>
</tr>
<tr>
<td>10.5</td>
<td>Metabolism of Unnatural Substrates by CYP 450<sub>cam</sub> Variants</td>
</tr>
<tr>
<td>10.6</td>
<td>Binding of Unnatural Substrate, Hydroxylation, and Product Release</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Small Hydrocarbons</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Alkyl Benzenes</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Polycyclic Aromatic Hydrocarbons (PAHs)</td>
</tr>
<tr>
<td>10.6.4</td>
<td>2-Ethylhexanol</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Aromatic–Aliphatic Hydrocarbon, Phenylcyclohexane</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Diphenylmethane</td>
</tr>
<tr>
<td>10.6.7</td>
<td>Valporic Acid</td>
</tr>
<tr>
<td>10.6.8</td>
<td>Terpenoids</td>
</tr>
<tr>
<td>10.6.9</td>
<td>Fused Benzene–Cycloalkane Compounds</td>
</tr>
<tr>
<td>10.6.10</td>
<td>Nitrogenous Compounds</td>
</tr>
<tr>
<td>10.6.11</td>
<td>Halogenated Compounds</td>
</tr>
<tr>
<td>10.7</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td>358</td>
</tr>
</tbody>
</table>

Chapter 11 QM/MM Studies of Cytochrome P450 Systems: Application to Drug Metabolism

Richard Lonsdale, Jeremy N. Harvey and Adrian J. Mulholland

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>11.2</td>
<td>CYPs and Drug Metabolism</td>
</tr>
<tr>
<td>11.3</td>
<td>Quantum Mechanical/Molecular Mechanical (QM/MM) Methods</td>
</tr>
</tbody>
</table>
Chapter 12 Mechanism and Function of Tryptophan and Indoleamine Dioxygenases

Sarah J. Thackray, Igor Efimov, Emma Lloyd Raven and Christopher G. Mowat

12.1 Introduction

12.2 Biological and Physiological Function of Indoleamine Dioxygenase and Tryptophan Dioxygenase

12.3 Structures of TDO and IDO

12.4 Turnover and Inhibition

12.5 Catalytic Cycle

12.6 Summary and Conclusions

References

Subject Index