Handbook of advanced radioactive waste conditioning technologies

Edited by
Michael I. Ojovan

© Woodhead Publishing Limited, 2011
Contents

Contributor contact details xi
Woodhead Publishing Series in Energy xiii

1 Radioactive waste characterization and selection of processing technologies 1
M. I. Ojovan, University of Sheffield, UK
1.1 Introduction 1
1.2 Radioactive waste classification 3
1.3 Radioactive waste characterization 5
1.4 Radioactive waste processing 6
1.5 Selection of conditioning technologies 8
1.6 Sources of further information and advice 12
1.7 Acknowledgements 12
1.8 References 15

Part I Radioactive waste treatment processes and conditioning technologies 17

2 Compaction processes and technology for treatment and conditioning of radioactive waste 19
M. Garamszeghy, Ontario Power Generation Inc., Canada
2.1 Applicable waste streams in compaction processes and technology 19
2.2 Compaction processes and technology 20
2.3 End waste forms and quality control of compaction processes 29
2.4 Pre-treatment in compaction processes 34
2.5 Secondary wastes of compaction processes and technology 36
2.6 Advantages and limitations of compaction processes and technology 37

© Woodhead Publishing Limited, 2011
Part II Advanced materials and technologies for the immobilisation of radioactive wastes 205

8 Development of geopolymers for nuclear waste immobilisation 207

E. R. Vance and D. S. Perera, Australian Nuclear Science and Technology Organisation (ANSTO), Australia

8.1 Nuclear wastes around the world 207

8.2 Cementitious low-level waste (LLW)/intermediate-level waste (ILW) waste forms 211

8.3 Future work 225

8.4 Conclusions 225

8.5 Sources of further information and advice 225

8.6 Acknowledgements 226

8.7 References 226

9 Development of glass matrices for high level radioactive wastes 230

C. M. Jantzen, Savannah River National Laboratory, USA

9.1 Introduction 230

9.2 High level radioactive waste (HLW) glass processing 239

9.3 Glass formulation and waste loading 244

9.4 Glass quality: feed-forward process control 252

9.5 Other glasses 268

9.6 Future trends 278

9.7 Sources of further information and advice 281

9.8 References 282

10 Development of ceramic matrices for high level radioactive wastes 293

H. Kinoshita, The University of Sheffield, UK

10.1 Introduction 293

10.2 Ceramic phases 296

10.3 Ceramic waste forms for the future 328

10.4 Sources of further information and advice 331

10.5 Acknowledgement 332

10.6 References 332

11 Development of waste packages for the disposal of radioactive waste: French experience 339

G. Ouzounian and R. Poisson, National Agency for the Management of Radioactive Wastes (Andra), France

11.1 Introduction 339