Contents

Preface xv
About the Authors xvii
On the Cover xviii
Nomenclature xix

1 Introduction 1

1-1 Safety Programs 2
1-2 Engineering Ethics 4
1-3 Accident and Loss Statistics 4
1-4 Acceptable Risk 12
1-5 Public Perceptions 14
1-6 The Nature of the Accident Process 15
1-7 Inherent Safety 20
1-8 Seven Significant Disasters 23
 Flixborough, England 23
 Bhopal, India 25
 Seveso, Italy 26
 Pasadena, Texas 27
 Texas City, Texas 29
 Jacksonville, Florida 30
 Port Wentworth, Georgia 30
Suggested Reading 31
Problems 32
2 **Toxicology** 37

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>How Toxicants Enter Biological Organisms</td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td></td>
<td>Skin</td>
</tr>
<tr>
<td></td>
<td>Respiratory System</td>
</tr>
<tr>
<td>2-2</td>
<td>How Toxicants Are Eliminated from Biological Organisms</td>
</tr>
<tr>
<td>2-3</td>
<td>Effects of Toxicants on Biological Organisms</td>
</tr>
<tr>
<td>2-4</td>
<td>Toxicological Studies</td>
</tr>
<tr>
<td>2-5</td>
<td>Dose versus Response</td>
</tr>
<tr>
<td>2-6</td>
<td>Models for Dose and Response Curves</td>
</tr>
<tr>
<td>2-7</td>
<td>Relative Toxicity</td>
</tr>
<tr>
<td>2-8</td>
<td>Threshold Limit Values</td>
</tr>
<tr>
<td>2-9</td>
<td>National Fire Protection Association (NFPA) Diamond</td>
</tr>
</tbody>
</table>

On-Line Resources	59
Suggested Reading	60
Problems	60

3 **Industrial Hygiene** 65

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Government Regulations</td>
</tr>
<tr>
<td></td>
<td>Laws and Regulations</td>
</tr>
<tr>
<td></td>
<td>Creating a Law</td>
</tr>
<tr>
<td></td>
<td>Creating a Regulation</td>
</tr>
<tr>
<td></td>
<td>OSHA: Process Safety Management</td>
</tr>
<tr>
<td></td>
<td>EPA: Risk Management Plan</td>
</tr>
<tr>
<td></td>
<td>DHS: Chemical Facility Anti-Terrorism Standards (CFATS)</td>
</tr>
<tr>
<td>3-2</td>
<td>Industrial Hygiene: Anticipation and Identification</td>
</tr>
<tr>
<td></td>
<td>Material Safety Data Sheets</td>
</tr>
<tr>
<td>3-3</td>
<td>Industrial Hygiene: Evaluation</td>
</tr>
<tr>
<td></td>
<td>Evaluating Exposures to Volatile Toxicants by Monitoring</td>
</tr>
<tr>
<td></td>
<td>Evaluating Worker Exposures to Dusts</td>
</tr>
<tr>
<td></td>
<td>Evaluating Worker Exposures to Noise</td>
</tr>
<tr>
<td></td>
<td>Estimating Worker Exposures to Toxic Vapors</td>
</tr>
<tr>
<td>3-4</td>
<td>Industrial Hygiene: Control</td>
</tr>
<tr>
<td></td>
<td>Respirators</td>
</tr>
<tr>
<td></td>
<td>Ventilation</td>
</tr>
</tbody>
</table>

On-Line Resources	109
Suggested Reading	109
Problems	110

4 **Source Models** 119

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Introduction to Source Models</td>
</tr>
<tr>
<td>4-2</td>
<td>Flow of Liquid through a Hole</td>
</tr>
<tr>
<td>4-3</td>
<td>Flow of Liquid through a Hole in a Tank</td>
</tr>
<tr>
<td>4-4</td>
<td>Flow of Liquids through Pipes</td>
</tr>
<tr>
<td></td>
<td>2-K Method</td>
</tr>
</tbody>
</table>

| Source Models | 119 |
| Problems | 110 |
4-5 Flow of Gases or Vapors through Holes 140
4-6 Flow of Gases or Vapors through Pipes 146
 Adiabatic Flows 146
 Isothermal Flows 153
4-7 Flashing Liquids 163
4-8 Liquid Pool Evaporation or Boiling 169
4-9 Realistic and Worst-Case Releases 170
4-10 Conservative Analysis 172
 Suggested Reading 173
 Problems 174

5 Toxic Release and Dispersion Models 185
5-1 Parameters Affecting Dispersion 186
5-2 Neutrally Buoyant Dispersion Models 190
 Case 1: Steady-State Continuous Point Release with No Wind 194
 Case 2: Puff with No Wind 195
 Case 3: Non-Steady-State Continuous Point Release
 with No Wind 196
 Case 4: Steady-State Continuous Point Source Release with Wind 197
 Case 5: Puff with No Wind and Eddy Diffusivity Is a Function
 of Direction 197
 Case 6: Steady-State Continuous Point Source Release with Wind and Eddy
 Diffusivity Is a Function of Direction 198
 Case 7: Puff with Wind 198
 Case 8: Puff with No Wind and with Source on Ground 199
 Case 9: Steady-State Plume with Source on Ground 199
 Case 10: Continuous Steady-State Source with Source at Height \(H_r \) above
 the Ground 200
 Pasquill-Gifford Model 200
 Case 11: Puff with Instantaneous Point Source at Ground Level,
 Coordinates Fixed at Release Point, Constant Wind Only in \(x \) Direction
 with Constant Velocity \(u \) 204
 Case 12: Plume with Continuous Steady-State Source at Ground Level and
 Wind Moving in \(x \) Direction at Constant Velocity \(u \) 205
 Case 13: Plume with Continuous Steady-State Source at Height \(H_r \)
 above Ground Level and Wind Moving in \(x \) Direction at Constant
 Velocity \(u \) 206
 Case 14: Puff with Instantaneous Point Source at Height \(H_r \) above Ground
 Level and a Coordinate System on the Ground That Moves with the
 Puff 207
 Case 15: Puff with Instantaneous Point Source at Height \(H_r \) above Ground
 Level and a Coordinate System Fixed on the Ground at the Release
 Point 208
 Worst-Case Conditions 208
 Limitations to Pasquill-Gifford Dispersion Modeling 208
5-3 Dense Gas Dispersion 209
5-4 Dense Gas Transition to Neutrally Buoyant Gas 219
 Continuous Release Transition 219
 Continuous Release Downwind Concentration 221
 Instantaneous Release Transition 221
 Instantaneous Release Downwind Composition 222
5-5 Toxic Effect Criteria 225
5-6 Effect of Release Momentum and Buoyancy 233
5-7 Release Mitigation 234
 Suggested Reading 235
 Problems 236

6 Fires and Explosions 245

6-1 The Fire Triangle 245
6-2 Distinction between Fires and Explosions 247
6-3 Definitions 247
6-4 Flammability Characteristics of Liquids and Vapors 249
 Liquids 250
 Gases and Vapors 253
 Vapor Mixtures 253
 Flammability Limit Dependence on Temperature 255
 Flammability Limit Dependence on Pressure 256
 Estimating Flammability Limits 256
6-5 Limiting Oxygen Concentration and Inerting 260
6-6 Flammability Diagram 262
6-7 Ignition Energy 270
6-8 Autoignition 270
6-9 Auto-Oxidation 271
6-10 Adiabatic Compression 272
6-11 Ignition Sources 273
6-12 Sprays and Mists 274
6-13 Explosions 275
 Detonation and Deflagration 276
 Confined Explosions 277
 Blast Damage Resulting from Overpressure 287
 TNT Equivalency 291
 TNO Multi-Energy Method 293
 Energy of Chemical Explosions 296
 Energy of Mechanical Explosions 298
 Missile Damage 301
 Blast Damage to People 301
 Vapor Cloud Explosions 303
 Boiling-Liquid Expanding-Vapor Explosions 304
 Suggested Reading 304
 Problems 305
7 Concepts to Prevent Fires and Explosions 317

7-1 Inerting 318
 Vacuum Purging 318
 Pressure Purging 321
 Combined Pressure-Vacuum Purging 323
 Vacuum and Pressure Purging with Impure Nitrogen 323
 Advantages and Disadvantages of the Various Pressure and Vacuum
 Inerting Procedures 325
 Sweep-Through Purging 325
 Siphon Purging 327
 Using the Flammability Diagram To Avoid Flammable
 Atmospheres 327

7-2 Static Electricity 333
 Fundamentals of Static Charge 333
 Charge Accumulation 334
 Electrostatic Discharges 335
 Energy from Electrostatic Discharges 337
 Energy of Electrostatic Ignition Sources 338
 Streaming Current 339
 Electrostatic Voltage Drops 342
 Energy of Charged Capacitors 342
 Capacitance of a Body 347
 Balance of Charges 350

7-3 Controlling Static Electricity 356
 General Design Methods To Prevent Electrostatic
 Ignitions 357
 Relaxation 358
 Bonding and Grounding 358
 Dip Pipes 359
 Increasing Conductivity with Additives 362
 Handling Solids without Flammable Vapors 363
 Handling Solids with Flammable Vapors 363

7-4 Explosion-Proof Equipment and Instruments 363
 Explosion-Proof Housings 365
 Area and Material Classification 365
 Design of an XP Area 366

7-5 Ventilation 367
 Open-Air Plants 367
 Plants Inside Buildings 368

7-6 Sprinkler Systems 370

7-7 Miscellaneous Concepts for Preventing Fires and Explosions 374
 Suggested Reading 374
 Problems 375
8 Chemical Reactivity 381

8-1 Background Understanding 382
8-2 Commitment, Awareness, and Identification of Reactive Chemical Hazards 384
8-3 Characterization of Reactive Chemical Hazards Using Calorimeters 390
 Introduction to Reactive Hazards Calorimetry 391
 Theoretical Analysis of Calorimeter Data 397
 Estimation of Parameters from Calorimeter Data 408
 Adjusting the Data for the Heat Capacity of the Sample Vessel 412
 Heat of Reaction Data from Calorimeter Data 413
 Using Pressure Data from the Calorimeter 414
 Application of Calorimeter Data 415
8-4 Controlling Reactive Hazards 416
Suggested Reading 418
Problems 418

9 Introduction to Reliefs 429

9-1 Relief Concepts 430
9-2 Definitions 432
9-3 Location of Reliefs 433
9-4 Relief Types and Characteristics 436
 Spring-Operated and Rupture Discs 436
 Buckling-Pin Reliefs 440
 Pilot-Operated Reliefs 440
 Chatter 441
 Advantages and Disadvantages of Various Reliefs 442
9-5 Relief Scenarios 443
9-6 Data for Sizing Reliefs 444
9-7 Relief Systems 444
 Relief Installation Practices 445
 Relief Design Considerations 447
 Horizontal Knockout Drum 448
 Flares 451
 Scrubbers 452
 Condensers 452
Suggested Reading 452
Problems 453

10 Relief Sizing 459

10-1 Conventional Spring-Operated Reliefs in Liquid Service 460
10-2 Conventional Spring-Operated Reliefs in Vapor or Gas Service 466
10-3 Rupture Disc Reliefs in Liquid Service 470
10-4 Rupture Disc Reliefs in Vapor or Gas Service 471
10-5 Two-Phase Flow during Runaway Reaction Relief 472
 Simplified Nomograph Method 478
10-6 Pilot-Operated and Bucking-Pin Reliefs 481
10-7 Deflagration Venting for Dust and Vapor Explosions 481
 Vents for Low-Pressure Structures 483
 Vents for High-Pressure Structures 485
10-8 Venting for Fires External to Process Vessels 488
10-9 Reliefs for Thermal Expansion of Process Fluids 492
 Suggested Reading 496
 Problems 497

11 Hazards Identification 505
11-1 Process Hazards Checklists 508
11-2 Hazards Surveys 508
11-3 Hazards and Operability Studies 524
11-4 Safety Reviews 530
 Informal Review 533
 Formal Review 534
11-5 Other Methods 537
 Suggested Reading 538
 Problems 538

12 Risk Assessment 549
12-1 Review of Probability Theory 550
 Interactions between Process Units 552
 Revealed and Unrevealed Failures 558
 Probability of Coincidence 562
 Redundancy 564
 Common Mode Failures 564
12-2 Event Trees 564
12-3 Fault Trees 569
 Determining the Minimal Cut Sets 572
 Quantitative Calculations Using the Fault Tree 575
 Advantages and Disadvantages of Fault Trees 576
 Relationship between Fault Trees and Event Trees 576
12-4 QRA and LOPA 577
 Quantitative Risk Analysis 577
 Layer of Protection Analysis 578
 Consequence 581
 Frequency 581
 Typical LOPA 585
 Suggested Reading 588
 Problems 588
13 Safety Procedures and Designs 597
13-1 Process Safety Hierarchy 598
 Process Safety Strategies 598
 Layers of Protection 598
13-2 Managing Safety 599
 Documentation 599
 Communications 599
 Delegation 599
 Follow-up 600
13-3 Best Practices 600
13-4 Procedures—Operating 600
13-5 Procedures—Permits 601
 Hot Work Permit 601
 Lock-Tag-Try Permit 601
 Vessel Entry Permit 602
13-6 Procedures—Safety Reviews and Accident Investigations 603
 Safety Reviews 603
 Incident Investigations 603
13-7 Designs for Process Safety 604
 Inherently Safer Designs 605
 Controls—Double Block and Bleed 606
 Controls—Safeguards or Redundancy 607
 Controls—Block Valves 608
 Controls—Explosion Suppression 608
 Flame Arrestors 608
 Containment 609
 Materials of Construction 610
 Process Vessels 610
 Deflagrations 612
 Detonations 612
13-8 Miscellaneous Designs for Fires and Explosions 615
13-9 Designs for Runaway Reactions 615
13-10 Designs for Handling Dusts 616
 Designs for Preventing Dust Explosions 617
 Management Practices for Preventing Dust Explosions 617
13-11 Suggested Reading 617
13-12 Problems 618

14 Case Histories 621
14-1 Static Electricity 622
 Tank Car Loading Explosion 622
 Explosion in a Centrifuge 622
 Duct System Explosion 623
 Conductor in a Solids Storage Bin 623
D Formal Safety Review Report for Example 10-4 669
E Saturation Vapor Pressure Data 679
F Special Types of Reactive Chemicals 681
G Hazardous Chemicals Data for a Variety of Chemical Substances 687

Index 695