CONTENTS

Foreword, ix

Preface to the Third Edition, xi

About the Author, xiii

Introduction, xv

1 Basis of Well Completion Engineering, 1
 1.1 Grounds of Reservoir Geology and Reservoir Engineering, 3
 1.2 Core Analysis Techniques, 13
 1.3 Reservoir Sensitivity to Fluid and Working Fluid Damage Evaluation, 22
 1.4 Reservoir Stress Sensitivity Analysis, 41
 1.5 In Situ Stress and Mechanical Parameters of Rock, 54
 1.6 Technological Grounds of Petroleum Production Engineering, 67

2 Well Completion Mode Selection, 75
 2.1 Vertical, Slant, and Directional Well Completion, 76

3 Selection and Determination of Tubing and Production Casing Sizes, 117
 3.1 Overview, 118
 3.2 Overview of Nodal Analysis, 119
 3.3 Selection and Determination of Tubing and Production Casing Sizes
 for Flowing Wells, 121
 3.4 Selection and Determination of Tubing and Production Casing Sizes
 for Gas Wells, 130
 3.5 Selection and Determination of Tubing and Production Casing Sizes
 for Artificial Lift Wells, 136
 3.6 Effects of Stimulation on Tubing and Production Casing Size Selection, 156
 3.7 Selection and Determination of Tubing and Production Casing Sizes for Heavy Oil
 and High Pour-Point Oil Production Wells, 161

4 Completion and Perforating Fluids, 171
 4.1 Functions of Drilling and Completion Fluid and Basic Requirements, 172
 4.2 Drilling and Completion Fluid Systems and Application, 175
 4.3 Shield-Type Temporary Plugging Technique, 185
 4.4 Drilling and Completion Fluid for a Complicated Reservoir, 203
 4.5 Perforating Fluid, 210

5 Production Casing and Cementing, 221
 5.1 Basic Requirements for Production Casing Design and Integrity
 Management of Production Casing, 223
5.2 Hole Structure and Types of Casing, 231
5.3 Strength of Casing and Strength Design of Casing String, 242
5.4 Cementing, 256
5.5 Production Casing and Cementing for Complex Type Wells, 272

6 Perforating, 295
6.1 Perforating Technology, 297
6.2 Perforated Well Productivity Influencing Rule Analysis, 315
6.3 Perforating Differential Pressure Design, 337
6.4 Optimizing the Perforation Design, 346

7 Well Completion Formation Damage Evaluation, 364
7.1 Overview, 365
7.2 Principle of Formation Damage Evaluation by Well Testing, 369
7.3 Formation Damage Diagnosis of Homogeneous Reservoir by Graphic Characteristics, 373
7.4 Graphic Characteristics of a Dual Porosity Reservoir and a Reservoir with a Hydraulically Created Fracture, 383
7.5 Distinguishing Effectiveness of Stimulation by Graphic Characteristics, 397
7.6 Quantitative Interpretation of Degree of Formation Damage, 403
7.7 Well Logging Evaluation of Formation Damage Depth, 413

8 Measures for Putting a Well into Production, 417
8.1 Preparations before Putting a Well into Production, 418
8.2 Main Measures for Putting the Well into Production, 423
8.3 Physical and Chemical Blocking Removal, 425
8.4 Hydraulic Fracturing for Putting a Well into Production, 445
8.5 Acidizing for Putting a Well into Production, 470
8.6 High-Energy Gas Fracturing for Putting a Well into Production, 495
8.7 Flowing Back, 512

9 Well Completion Tubing String, 524
9.1 Oil Well Completion Tubing String, 525
9.2 Gas Well Completion Tubing String, 537
9.3 Separate-Layer Water Injection String, 544
9.4 Heavy Oil Production Tubing String, 547
9.5 Completion Tubing String Safety System, 553
9.6 Tubing String Mechanics, 562

10 Wellhead Assembly, 572
10.1 Oil-Well Christmas Tree and Tubinghead, 574
10.2 Gas-Well Christmas Tree and Tubinghead, 587
10.3 Water Injection and Thermal Production Wellhead Assembly, 596
10.4 Common Components of a Wellhead Assembly, 601
11 Oil and Gas Well Corrosion and Corrosion Prevention, 617
11.1 Related Calculation of Oil and Gas Well Corrosion, 619
11.2 Oil and Gas Well Corrosion Mechanisms and Classification, 624
11.3 Material Selection for Corrosive Environment of Oil and Gas Wells, 640
11.4 Oil and Gas Well Corrosion Prevention Design, 655
11.5 Tubing and Casing Corrosion Prevention for Sour Gas Reservoirs, 672

Index, 701