CONTENTS

Preface ix
Conference Overview xi
Schedule xii

INVITED PAPERS (NOT PEER REVIEWED)

Toward Meaning and Scientific Thinking in the Traditional Freshman Laboratory: Opening the “Idea Space” ... 1
S. Allie and D. Demaree

Structuring Classroom Discourse Using Formative Assessment Rubrics 5
D. T. Brookes and Y. Lin

Using the Algebra Project Method to Regiment Discourse in an Energy Course for Teachers 9

Developing Thinking and Problem Solving Skills in Introductory Mechanics 13
V. P. Coletta and J. A. Phillips

Applying ISLE Ideas to Active Engagement in the Spins Paradigm 17
D. Demaree

Uncovering the Hidden Decisions that Shape Curricula .. 21
D. B. Harlow

Promoting and Studying Deep-level Discourse during Large-lecture Introductory Physics 25
S. Li and D. Demaree

Using Analogy to Solve a Three-step Physics Problem .. 29
S.-Y. Lin and C. Singh

nTIPERs: Tasks to Help Students “Unpack” Aspects of Newtonian Mechanics 33
D. P. Maloney, C. Hieggelke, and S. Kanim

Upper-division Activities that Foster “Thinking like a Physicist” 37

Using Reflection with Peers to Help Students Learn Effective Problem Solving Strategies 41
A. Mason and C. Singh

Facilitating Students’ Problem Solving across Multiple Representations in Introductory Mechanics 45
D.-H. Nguyen, E. Gire, and N. S. Rebello

Introducing Students to the Culture of Physics: Explicating Elements of the Hidden Curriculum 49
E. Redish

What We Learned by Moving beyond Content Knowledge and Diversifying Our Research Agenda 53
M. S. Sabella

Scientific Reasoning for Pre-Service Elementary Teachers ... 57
H. R. Sadaghiani

Documenting and Interpreting Ways to Engage Students in ‘Thinking like a Physicist’ 61
E. van Zee and C. Manogue

PEER REVIEWED PAPERS

Constructing Definitions as a Goal of Inquiry .. 65
L. J. Atkins and I. Y. Salter

Interpretation in Quantum Physics as Hidden Curriculum .. 69
C. Baily and N. D. Finkelstein

Vector Addition: Effect of the Context and Position of the Vectors 73
P. Barniol and G. Zavala
Generating Explanations for an Emergent Process: The Movement of Sand Dunes
L. Barth-Cohen

Searching for Evidence of Student Understanding
T. Bartiromo, J. Finley, and E. Etkina

Changing Participation through Formation of Student Learning Communities
E. Brewe, L. H. Kramer, and G. E. O'Brien

Comparing Student Learning in Mechanics Using Simulations and Hands-on Activities
A. Carmichael, J. J. Chini, N. S. Rebello, and S. Puntambekar

How Does Visual Attention Differ between Experts and Novices on Physics Problems?
A. Carmichael, A. Larson, E. Gire, L. Loschky, and N. S. Rebello

Effects of a Prior Virtual Experience on Students' Interpretations of Real Data
J. J. Chini, A. Carmichael, E. Gire, N. S. Rebello, and S. Puntambekar

Fluctuations in Student Understanding of Newton's 3rd Law
J. W. Clark, E. C. Sayre, and S. V. Franklin

Energy in Action: The Construction of Physics Ideas in Multiple Modes

The Use of a Web-based Classroom Interaction System in Introductory Physics Classes
E. D. Corpuz, Ma. A. A. Corpuz, and R. Rosalez

Beta-test Data on an Assessment of Textbook Problem Solving Ability: An Argument for Right/Wrong Grading?
K. Cummings and J. D. Marx

Why Do Faculty Try Research Based Instructional Strategies?
M. H. Dancy, C. Turpen, and C. Henderson

TA Beliefs in a SCALE-UP Style Classroom
G. DeBeck, S. Settelmeyer, S. Li, and D. Demaree

Are All Wrong FCI Answers Equivalent?
H. Dedic, S. Rosenfield, and N. Lasry

Assessing Students' Attitudes in a College Physics Course in Mexico
J. de la Garza and H. Alarcon

Sustained Effects of Solving Conceptually Scaffolded Synthesis Problems
L. Ding, N. W. Reay, A. Heckler, and L. Bao

A Conceptual Approach to Physics Problem Solving

The Impact of the History of Physics on Student Attitude and Conceptual Understanding of Physics
S. Garcia, A. Hankins, and H. Sadaghiani

Electric Field Concept: Effect of the Context and the Type of Questions
A. Garza and G. Zavala

Investigating the Perceived Difficulty of Introductory Physics Problems
E. Gire and N. S. Rebello

Development and Evaluation of Large-enrollment, Active-learning Physical Science Curriculum
F. Goldberg, E. Price, D. Harlow, S. Robinson, R. Kruse, and M. McKean

Are Learning Assistants Better K-12 Science Teachers?
K. E. Gray, D. C. Webb, and V. K. Otero

Learning Pedagogy in Physics
D. B. Harlow, L. H. Swanson, H. A. Dwyer, and J. A. Bianchini

Students' Responses to Different Representations of a Vector Addition Question

Variables that Correlate with Faculty Use of Research-based Instructional Strategies
C. Henderson, M. H. Dancy, and M. Niewiadomska-Bugaj

Writing Position Vectors in 3-d Space: A Student Difficulty with Spherical Unit Vectors in Intermediate E&M
B. E. Hinrichs

Exploring Student Understanding of Atoms and Radiation with the Atom Builder Simulator
A. Johnson and A. Hafele