Contents

Foreword vii
Preface ix
Acknowledgments xi

I. Basic Methods

1. Seven Is More Than Six. The Pigeon-Hole Principle 1
 1.1 The Basic Pigeon-Hole Principle 1
 1.2 The Generalized Pigeon-Hole Principle 3
 Exercises .. 9
 Supplementary Exercises 11
 Solutions to Exercises 13

2. One Step at a Time. The Method of Mathematical Induction 21
 2.1 Weak Induction 21
 2.2 Strong Induction 26
 Exercises .. 28
 Supplementary Exercises 30
 Solutions to Exercises 31

II. Enumerative Combinatorics

3. There Are A Lot Of Them. Elementary Counting Problems 39
 3.1 Permutations .. 39
 3.2 Strings over a Finite Alphabet 42
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td></td>
<td>Choice Problems</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>No Matter How You Slice It. The Binomial Theorem and Related Identities</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>The Binomial Theorem</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>The Multinomial Theorem</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>When the Exponent Is Not a Positive Integer</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Divide and Conquer. Partitions</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>Compositions</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Set Partitions</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Integer Partitions</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Not So Vicious Cycles. Cycles in Permutations</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>Cycles in Permutations</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td>Permutations with Restricted Cycle Structure</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>You Shall Not Overcount. The Sieve</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>Enumerating The Elements of Intersecting Sets</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>7.2</td>
<td>Applications of the Sieve Formula</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td></td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Supplementary Exercises</td>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Solutions to Exercises</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>
Contents

8. A Function Is Worth Many Numbers. Generating Functions 149

8.1 Ordinary Generating Functions 149

8.1.1 Recurrence Relations and Generating Functions 149

8.1.2 Products of Generating Functions 156

8.1.3 Compositions of Generating Functions 163

8.2 Exponential Generating Functions 166

8.2.1 Recurrence Relations and Exponential Generating Functions 166

8.2.2 Products of Exponential Generating Functions 168

8.2.3 Compositions of Exponential Generating Functions 171

Exercises 174

Supplementary Exercises 176

Solutions to Exercises 178

III. Graph Theory

9. Dots and Lines. The Origins of Graph Theory 189

9.1 The Notion of Graphs. Eulerian Trails 189

9.2 Hamiltonian Cycles 194

9.3 Directed Graphs 196

9.4 The Notion of Isomorphisms 199

Exercises 202

Supplementary Exercises 205

Solutions to Exercises 208

10. Staying Connected. Trees 215

10.1 Minimally Connected Graphs 215

10.2 Minimum-weight Spanning Trees. Kruskal’s Greedy Algorithm 221

10.3 Graphs and Matrices 225

10.3.1 Adjacency Matrices of Graphs 225

10.4 The Number of Spanning Trees of a Graph 228

Exercises 233

Supplementary Exercises 236

Solutions to Exercises 238
11. Finding A Good Match. Coloring and Matching 247
11.1 Introduction .. 247
11.2 Bipartite Graphs 249
11.3 Matchings in Bipartite Graphs 254
11.4 More Than Two Colors 260
11.5 Matchings in Graphs That Are Not Bipartite 262
Exercises .. 266
Supplementary Exercises 267
Solutions to Exercises 269

12. Do Not Cross. Planar Graphs 275
12.1 Euler’s Theorem for Planar Graphs 275
12.2 Polyhedra ... 278
12.3 Coloring Maps 285
Exercises .. 287
Supplementary Exercises 288
Solutions to Exercises 290

IV. Horizons

13.1 Ramsey Theory for Finite Graphs 293
13.2 Generalizations of the Ramsey Theorem 298
13.3 Ramsey Theory in Geometry 301
Exercises .. 304
Supplementary Exercises 305
Solutions to Exercises 307

14. So Hard To Avoid. Subsequence Conditions on Permutations 313
14.1 Pattern Avoidance 313
14.2 Stack Sortable Permutations 322
Exercises .. 334
Supplementary Exercises 335
Solutions to Exercises 338
15. Who Knows What It Looks Like, But It Exists. The Probabilistic Method

15.1 The Notion of Probability ... 349
15.2 Non-constructive Proofs ... 352
15.3 Independent Events .. 355
 15.3.1 The Notion of Independence and Bayes' Theorem 355
 15.3.2 More Than Two Events ... 359
15.4 Expected Values ... 360
 15.4.1 Linearity of Expectation .. 361
 15.4.2 Existence Proofs Using Expectation 364
 15.4.3 Conditional Expectation .. 365
Exercises ... 367
Supplementary Exercises ... 370
Solutions to Exercises ... 373

16. At Least Some Order. Partial Orders and Lattices 381

16.1 The Notion of Partially Ordered Sets 381
16.2 The Möbius Function of a Poset ... 387
16.3 Lattices ... 394
Exercises ... 401
Supplementary Exercises ... 403
Solutions to Exercises ... 406

17. As Evenly As Possible. Block Designs and Error Correcting Codes 413

17.1 Introduction ... 413
 17.1.1 Moto-cross Races .. 413
 17.1.2 Incompatible Computer Programs 415
17.2 Balanced Incomplete Block Designs 417
17.3 New Designs From Old ... 419
17.4 Existence of Certain BIBDs .. 424
 17.4.1 A Derived Design of a Projective Plane 426
17.5 Codes and Designs .. 427
 17.5.1 Coding Theory .. 427
 17.5.2 Error Correcting Codes ... 427
 17.5.3 Formal Definitions on Codes 429