GUIDELINES FOR
OPEN PIT SLOPE DESIGN

EDITORS: JOHN READ, PETER STACEY
Contents

Preface and acknowledgments
xiii

1 **Fundamentals of slope design**
Peter Stacey
1.1 Introduction
1.2 Pit slope designs
 1.2.1 Safety/social factors
 1.2.2 Economic factors
 1.2.3 Environmental and regulatory factors
1.3 Terminology of slope design
 1.3.1 Slope configurations
 1.3.2 Instability
 1.3.3 Rockfall
1.4 Formulation of slope designs
 1.4.1 Introduction
 1.4.2 Geotechnical model
 1.4.3 Data uncertainty (Chapter 8)
 1.4.4 Acceptance criteria (Chapter 9)
 1.4.5 Slope design methods (Chapter 10)
 1.4.6 Design implementation (Chapter 11)
 1.4.7 Slope evaluation and monitoring (Chapter 12)
 1.4.8 Risk management (Chapter 13)
 1.4.9 Closure (Chapter 14)
1.5 Design requirements by project level
 1.5.1 Project development
 1.5.2 Study requirements
1.6 Review
 1.6.1 Overview
 1.6.2 Review levels
 1.6.3 Geotechnically competent person
1.7 Conclusion

2 **Field data collection**
John Read, Jarek Jakubec and Geoff Beale
2.1 Introduction
2.2 Outcrop mapping and logging
 2.2.1 Introduction
 2.2.2 General geotechnical logging
 2.2.3 Mapping for structural analyses
 2.2.4 Surface geophysical techniques
2.3 Overburden soils logging
 2.3.1 Classification
 2.3.2 Strength and relative density
2.4 Core drilling and logging
vi Guidelines for Open Pit Slope Design

2.4.1 Introduction 26
2.4.2 Planning and scoping 26
2.4.3 Drill hole location and collar surveying 27
2.4.4 Core barrels 27
2.4.5 Downhole surveying 27
2.4.6 Core orientation 28
2.4.7 Core handling and documentation 29
2.4.8 Core sampling, storage and preservation 31
2.4.9 Core logging 32
2.4.10 Downhole geophysical techniques 39

2.5 Groundwater data collection 40
2.5.1 Approach to groundwater data collection 40
2.5.2 Tests conducted during RC drilling 42
2.5.3 Piezometer installation 44
2.5.4 Guidance notes: installation of test wells for pit slope depressurisation 47
2.5.5 Hydraulic tests 49
2.5.6 Setting up pilot depressurisation trials 51

2.6 Data management 52

Endnotes 52

3 Geological model 53
John Read and Luke Keeney

3.1 Introduction 53
3.2 Physical setting 53
3.3 Ore body environments 55
3.3.1 Introduction 55
3.3.2 Porphyry deposits 55
3.3.3 Epithermal deposits 56
3.3.4 Kimberlites 56
3.3.5 VMS deposits 57
3.3.6 Skarn deposits 57
3.3.7 Stratabound deposits 57

3.4 Geotechnical requirements 59

3.5 Regional seismicity 62
3.5.1 Distribution of earthquakes 62
3.5.2 Seismic risk data 65

3.6 Regional stress 66

4 Structural model 69
John Read

4.1 Introduction 69
4.2 Model components 69
4.2.1 Major structures 69
4.2.2 Fabric 75

4.3 Geological environments 76
4.3.1 Introduction 76
4.3.2 Intrusive 76
4.3.3 Sedimentary 76
4.3.4 Metamorphic 77

4.4 Structural modelling tools 77
4.4.1 Solid modelling 77
4.4.2 Stereographic projection 77
4.4.3 Discrete fracture network modelling 79

4.5 Structural domain definition 80
4.5.1 General guidelines 80
4.5.2 Example application 80

5 Rock mass model 83
Antonio Karzulovic and John Read

5.1 Introduction 83

5.2 Intact rock strength 83
5.2.1 Introduction 83
5.2.2 Index properties 85
5.2.3 Mechanical properties 88
5.2.4 Special conditions 92

5.3 Strength of structural defects 94
5.3.1 Terminology and classification 94
5.3.2 Defect strength 94

5.4 Rock mass classification 117
5.4.1 Introduction 117
5.4.2 RMR, Bieniawski 117
5.4.3 Laubscher IRMR and MRMR 119
5.4.4 Hoek-Brown GSI 123

5.5 Rock mass strength 127
5.5.1 Introduction 127
5.5.2 Laubscher strength criteria 127
5.5.3 Hoek-Brown strength criterion 128
5.5.4 CNI criterion 130
5.5.5 Directional rock mass strength 132
5.5.6 Synthetic rock mass model 138

6 Hydrogeological model 141
Geoff Beak

6.1 Hydrogeology and slope engineering 141
6.1.1 Introduction 141
6.1.2 Porosity and pore pressure 141
6.1.3 General mine dewatering and localised pore pressure control 146
6.1.4 Making the decision to depressurise 148
6.1.5 Developing a slope depressurisation program 151

6.2 Background to groundwater hydraulics 151
6.2.1 Groundwater flow 151
6.2.2 Porous-medium (intergranular) groundwater settings 154
6.2.3 Fracture-flow groundwater settings 156
6.2.4 Influences on fracturing and groundwater 161
6.2.5 Mechanisms controlling pore pressure reduction 163
6.3 Developing a conceptual hydrogeological model of pit slopes
 6.3.1 Integrating the pit slope model into the regional model
 6.3.2 Conceptual mine scale hydrogeological model
 6.3.3 Detailed hydrogeological model of pit slopes

6.4 Numerical hydrogeological models
 6.4.1 Introduction
 6.4.2 Numerical hydrogeological models for mine scale dewatering applications
 6.4.3 Pit slope scale numerical modelling
 6.4.4 Numerical modelling for pit slope pore pressures
 6.4.5 Coupling pore pressure and geotechnical models

6.5 Implementing a slope depressurisation program
 6.5.1 General mine dewatering
 6.5.2 Specific programs for control of pit slope pressures
 6.5.3 Selecting a slope depressurisation method
 6.5.4 Use of blasting to open up drainage pathways
 6.5.5 Water management and control

6.6 Areas for future research
 6.6.1 Introduction
 6.6.2 Relative pore pressure behaviour between high-order and low-order fractures
 6.6.3 Standardising the interaction between pore pressure and geotechnical models
 6.6.4 Investigation of transient pore pressures
 6.6.5 Coupled pore pressure and geotechnical modelling

7 Geotechnical model
 Alan Guest and John Read

7.1 Introduction

7.2 Constructing the geotechnical model
 7.2.1 Required output
 7.2.2 Model development
 7.2.3 Building the model
 7.2.4 Block modelling approach

7.3 Applying the geotechnical model
 7.3.1 Scale effects
 7.3.2 Classification systems
 7.3.3 Hoek-Brown rock mass strength criterion
 7.3.4 Pore pressure considerations

8 Data uncertainty
 John Read

8.1 Introduction

8.2 Causes of data uncertainty

8.3 Impact of data uncertainty

8.4 Quantifying data uncertainty
 8.4.1 Overview
 8.4.2 Subjective assessment
Contents

8.4.3 Relative frequency concepts 216
8.5 Reporting data uncertainty 216
 8.5.1 Geotechnical reporting system 216
 8.5.2 Assessment criteria checklist 219
8.6 Summary and conclusions 219

9 Acceptance criteria 221
 Johan Wesseloo and John Read
 9.1 Introduction 221
 9.2 Factor of safety 221
 9.2.1 FoS as a design criterion 221
 9.2.2 Tolerable factors of safety 223
 9.3 Probability of failure 223
 9.3.1 PoF as a design criterion 223
 9.3.2 Acceptable levels of PoF 224
 9.4 Risk model 225
 9.4.1 Introduction 225
 9.4.2 Cost–benefit analysis 226
 9.4.3 Risk model process 228
 9.4.4 Formulating acceptance criteria 232
 9.4.5 Slope angles and levels of confidence 234
 9.5 Summary 235

10 Slope design methods 237
 Loren Lorig, Peter Stacey and John Read
 10.1 Introduction 237
 10.1.1 Design steps 237
 10.1.2 Design analyses 238
 10.2 Kinematic analyses 239
 10.2.1 Benches 239
 10.2.2 Inter-ramp slopes 244
 10.3 Rock mass analyses 246
 10.3.1 Overview 246
 10.3.2 Empirical methods 246
 10.3.3 Limit equilibrium methods 248
 10.3.4 Numerical methods 253
 10.3.5 Summary recommendations 263

11 Design implementation 265
 Peter Williams, John Floyd, Gideon Chitombo and Trevor Maton
 11.1 Introduction 265
 11.2 Mine planning aspects of slope design 265
 11.2.1 Introduction 265
 11.2.2 Open pit design philosophy 265
 11.2.3 Open pit design process 267
 11.2.4 Application of slope design criteria in mine design 268
 11.2.5 Summary and conclusions 276
11.3 Controlled blasting 276
11.3.1 Introduction 276
11.3.2 Design terminology 277
11.3.3 Blast damage mechanisms 278
11.3.4 Influence of geology on blast-induced damage 279
11.3.5 Controlled blasting techniques 282
11.3.6 Delay configuration 292
11.3.7 Design implementation 294
11.3.8 Performance monitoring and analysis 296
11.3.9 Design refinement 299
11.3.10 Design platform 305
11.3.11 Planning and optimisation cycle 306

11.4 Excavation and scaling 310
11.4.1 Excavation 310
11.4.2 Scaling and bench cleanup 312
11.4.3 Evaluation of bench design achievement 313

11.5 Artificial support 313
11.5.1 Basic approaches 313
11.5.2 Stabilisation, repair and support methods 314
11.5.3 Design considerations 315
11.5.4 Economic considerations 316
11.5.5 Safety considerations 317
11.5.6 Specific situations 317
11.5.7 Reinforcement measures 318
11.5.8 Rockfall protection measures 325

12 Performance assessment and monitoring 327
Mark Hawley, Scott Marisett, Geoff Beale and Peter Stacey

12.1 Assessing slope performance 327
12.1.1 Introduction 327
12.1.2 Geotechnical model validation and refinement 327
12.1.3 Bench performance 329
12.1.4 Inter-ramp slope performance 337
12.1.5 Overall slope performance 339
12.1.6 Summary and conclusions 342

12.2 Slope monitoring 342
12.2.1 Introduction 342
12.2.2 Movement monitoring systems 343
12.2.3 Guidelines on the execution of monitoring programs 363

12.3 Ground control management plans 370
12.3.1 Introduction 370
12.3.2 Hazard management plan 371

13 Risk management 381
Ted Brown and Alison Booth

13.1 Introduction 381
13.1.1 Background 381
13.1.2 Purpose and content of this chapter 381
13.1.3 Sources of information 382
Appendix 3 437
Influence of in situ stresses on open pit design
Evert Hoek, Jean Hutchinson, Kathy Kalenchuk and Mark Diederichs

Appendix 4 447
Risk management: geotechnical hazard checklists

Appendix 5 459
Example regulations for open pit closure
Terminology and definitions 462
References 467
Index 487