Shear and punching shear in RC and FRC elements

Technical report

Proceedings of a workshop held on 15-16 October 2010, in Salò, Lake Garda, Italy

October 2010
Contents

Preface
Stephen Foster, Fausto Minelli, Giovanni Plizzari and Viktor Sigrist

1 A historical review of shear
György L. Balázs

PART I: Background to draft Model Code 2010

2 MC2010: Shear strength of beams and implications of the new approaches
Evan C. Bentz

3 MC2010: The Critical Shear Crack Theory as a mechanical model for punching shear design and its application to code provisions
Aurelio Muttoni and Miguel Fernández Ruiz

4 MC2010: overview on the shear provisions for FRC
Marco di Prisco, Giovanni Plizzari and Lucie Vandewalle

PART II: Recent advancements in shear and punching shear of R/C structures

5 Improving analytical models for shear design and evaluation of reinforced concrete structures
Michael P. Collins

6 A structured approach to the design and analysis of beams in shear
Viktor Sigrist and Britta Hackbarth

7 Shear in slabs and beams: should they be treated in the same way?
Aurelio Muttoni and Miguel Fernández Ruiz

8 Residual shear bearing capacity of existing bridges
Joost Walraven

9 Development of Dutch guidelines for nonlinear finite element analyses of shear critical bridge and viaduct beams
Jan Rots, Beatrice Belletti, Cecilia Damoni and Max Hendriks

10 Components of shear resistance in prestressed bulb-tee girders
Daniel Kuchma, Shaoyun Sun, Tom Nagle and Kang Su Kim

11 Thin-walled open-section P/C beams in fire: a case study
Patrick Bamonte, Roberto Felicetti, Pietro G. Gambarova and Ezio Giuriani

fib Bulletin 57: Shear and punching shear in RC and FRC elements
PART III: Recent advancements in shear and punching shear of FRC structures

12 Design of FRC beams for shear using the VEM and the draft Model Code approach
 Stephen Foster 195

13 Shear strength of FRC members with little or no shear reinforcement: a new analytical model
 Fausto Minelli and Giovanni A. Plizzari 211

14 Effectiveness of steel fiber as minimum shear reinforcement: panel tests
 Jimmy Susetyo and Frank J. Vecchio 227

15 Use of steel fibre reinforcement for shear resistance in beams and slab-column connections
 Gustavo J. Parra-Montesinos, James K. Wight, Hai H. Dinh and Min-Yuan Cheng 243